The Influence of Autumnal Eurasian Snow Cover on Climate and Its Link with Arctic Sea Ice Cover

Guillaume Gastineau Sorbonne Universités, UPMC/CNRS/IRD/MNHN, LOCEAN/IPSL, Paris, France

Search for other papers by Guillaume Gastineau in
Current site
Google Scholar
PubMed
Close
,
Javier García-Serrano Barcelona Supercomputing Center, Barcelona, Spain

Search for other papers by Javier García-Serrano in
Current site
Google Scholar
PubMed
Close
, and
Claude Frankignoul Sorbonne Universités, UPMC/CNRS/IRD/MNHN, LOCEAN/IPSL, Paris, France

Search for other papers by Claude Frankignoul in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relationship between Eurasian snow cover extent (SCE) and Northern Hemisphere atmospheric circulation is studied in reanalysis during 1979–2014 and in CMIP5 preindustrial control runs. In observations, dipolar SCE anomalies in November, with negative anomalies over eastern Europe and positive anomalies over eastern Siberia, are followed by a negative phase of the Arctic Oscillation (AO) one and two months later. In models, this effect is largely underestimated, but four models simulate such a relationship. In observations and these models, the SCE influence is primarily due to the eastern Siberian pole, which is itself driven by the Scandinavian pattern (SCA), with a large anticyclonic anomaly over the Urals. The SCA is also responsible for a link between Eurasian SCE anomalies and sea ice concentration (SIC) anomalies in the Barents–Kara Sea.

Increasing SCE over Siberia leads to a local cooling of the lower troposphere and is associated with warm conditions over the eastern Arctic. This is followed by a polar vortex weakening in December and January, which has an AO-like signature. In observations, the association between November SCE and the winter AO is amplified by SIC anomalies in the Barents–Kara Sea, where large diabatic heating of the lower troposphere occurs, but results suggest that the SCE is the main driver of the AO. Conversely, the sea ice anomalies have little influence in most models, which is consistent with the different SCA variability, the colder mean state, and the underestimation of troposphere–stratosphere coupling simulated in these models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-16-0623.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Guillaume Gastineau, guillaume.gastineau@upmc.fr

Abstract

The relationship between Eurasian snow cover extent (SCE) and Northern Hemisphere atmospheric circulation is studied in reanalysis during 1979–2014 and in CMIP5 preindustrial control runs. In observations, dipolar SCE anomalies in November, with negative anomalies over eastern Europe and positive anomalies over eastern Siberia, are followed by a negative phase of the Arctic Oscillation (AO) one and two months later. In models, this effect is largely underestimated, but four models simulate such a relationship. In observations and these models, the SCE influence is primarily due to the eastern Siberian pole, which is itself driven by the Scandinavian pattern (SCA), with a large anticyclonic anomaly over the Urals. The SCA is also responsible for a link between Eurasian SCE anomalies and sea ice concentration (SIC) anomalies in the Barents–Kara Sea.

Increasing SCE over Siberia leads to a local cooling of the lower troposphere and is associated with warm conditions over the eastern Arctic. This is followed by a polar vortex weakening in December and January, which has an AO-like signature. In observations, the association between November SCE and the winter AO is amplified by SIC anomalies in the Barents–Kara Sea, where large diabatic heating of the lower troposphere occurs, but results suggest that the SCE is the main driver of the AO. Conversely, the sea ice anomalies have little influence in most models, which is consistent with the different SCA variability, the colder mean state, and the underestimation of troposphere–stratosphere coupling simulated in these models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-16-0623.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Guillaume Gastineau, guillaume.gastineau@upmc.fr

Supplementary Materials

    • Supplemental Materials (PDF 2.65 MB)
Save
  • Allen, R. J., and C. S. Zender, 2010: Effects of continental‐scale snow albedo anomalies on the wintertime Arctic oscillation. J. Geophys. Res., 115, D23105, doi:10.1029/2010JD014490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661686, doi:10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bueh, C., and H. Nakamura, 2007: Scandinavian pattern and its climatic impact. Quart. J. Roy. Meteor. Soc., 133, 21172131, doi:10.1002/qj.173.

  • Cattiaux, J., and C. Cassou, 2013: Opposite CMIP3/CMIP5 trends in the wintertime northern annular mode explained by combined local sea ice and remote tropical influences. Geophys. Res. Lett., 40, 36823687, doi:10.1002/grl.50643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., H. Douville, and Y. Peings, 2013: European temperatures in CMIP5: Origins of present-day biases and future uncertainties. Climate Dyn., 41, 28892907, doi:10.1007/s00382-013-1731-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Close, S., M.-N. Houssais, and C. Herbaut, 2015: Regional dependence in the timing of onset of rapid decline in Arctic sea ice concentration. J. Geophys. Res. Oceans, 120, 80778098, doi:10.1002/2015JC011187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., 1994: Snow cover and climate. Weather, 49, 150156, doi:10.1002/j.1477-8696.1994.tb05997.x.

  • Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345348, doi:10.1029/1998GL900321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and C. Fletcher, 2007: Improved skill of Northern Hemisphere winter surface temperature predictions based on land–atmosphere fall anomalies. J. Climate, 20, 41184132, doi:10.1175/JCLI4241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and J. Jones, 2011: A new index for more accurate winter predictions. Geophys. Res. Lett., 38, L21701, doi:10.1029/2011GL049626.

  • Cohen, J., D. Salstein, and K. Saito, 2002: A dynamical framework to understand and predict the major Northern Hemisphere mode. Geophys. Res. Lett., 29, 1412, doi:10.1029/2001GL014117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., M. Barlow, P. J. Kushner, and K. Saito, 2007: Stratosphere–troposphere coupling and links with Eurasian land surface variability. J. Climate, 20, 53355343, doi:10.1175/2007JCLI1725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, doi:10.1088/1748-9326/7/1/014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014a: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

  • Cohen, J., J. C. Furtado, J. Jones, M. Barlow, D. Whittleston, and D. Entekhabi, 2014b: Linking Siberian snow cover to precursors of stratospheric variability. J. Climate, 27, 54225432, doi:10.1175/JCLI-D-13-00779.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2012: Large decadal decline of the Arctic multiyear ice cover. J. Climate, 25, 11761193, doi:10.1175/JCLI-D-11-00113.1.

  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, doi:10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, A., T. N. Palmer, and S. Corti, 2012: Simulating regime structures in weather and climate prediction models. Geophys. Res. Lett., 39, L21805, doi:10.1029/2012GL053284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déry, S. J., and R. D. Brown, 2007: Recent Northern Hemisphere snow cover extent trends and implications for the snow–albedo feedback. Geophys. Res. Lett., 34, L22504, doi:10.1029/2007GL031474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., G. Magnusdottir, R. Saravanan, and A. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889, doi:10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, doi:10.1175/JCLI4278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutra, E., S. Kotlarski, P. Viterbo, G. Balsamo, P. M. A. Miranda, C. Schär, P. Bissolli, and T. Jonas, 2011: Snow cover sensitivity to horizontal resolution, parameterizations, and atmospheric forcing in a land surface model. J. Geophys. Res., 116, D21109, doi:10.1029/2011JD016061.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J., 2004: A stratified diagnosis of the Indian monsoon–Eurasian snow cover relationship. J. Climate, 17, 11101122, doi:10.1175/1520-0442(2004)017<1110:ASDOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., P. J. Kushner, and J. Cohen, 2007: Stratospheric control of the extratropical circulation response to surface forcing. Geophys. Res. Lett., 34, L21802, doi:10.1029/2007GL031626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., S. C. Hardiman, P. J. Kushner, and J. Cohen, 2009: The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Climate, 22, 12081222, doi:10.1175/2008JCLI2505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea‐ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324, doi:10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, doi:10.1175/2010JCLI3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, and P. Cauchy, 2014: Observed atmospheric response to cold season sea ice variability in the Arctic. J. Climate, 27, 12431254, doi:10.1175/JCLI-D-13-00189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, J. C., J. L. Cohen, A. H. Butler, E. E. Riddle, and A. Kumar, 2015: Eurasian snow cover variability and links to winter climate in the CMIP5 models. Climate Dyn., 45, 25912605, doi:10.1007/s00382-015-2494-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, J. C., J. L. Cohen, and E. Tziperman, 2016: The combined influences of autumnal snow and sea ice on Northern Hemisphere winters. Geophys. Res. Lett., 43, 34783485, doi:10.1002/2016GL068108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., C. Frankignoul, G. Gastineau, and A. de la Cámara, 2015: On the predictability of the winter Euro-Atlantic climate: Lagged influence of autumn Arctic sea ice. J. Climate, 28, 51955216, doi:10.1175/JCLI-D-14-00472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., and Coauthors, 2017: Multi-model assessment of linkages between eastern Arctic sea-ice variability and the Euro-Atlantic atmospheric circulation in current climate. Climate Dyn., doi:10.1007/s00382-016-3454-3, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., and C. Frankignoul, 2015: Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Climate, 28, 13961416, doi:10.1175/JCLI-D-14-00424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, G., D. Entekhabi, J. Cohen, and D. Robinson, 2004: Sensitivity of atmospheric response to modeled snow anomaly characteristics. J. Geophys. Res., 109, D06107, doi:10.1029/2003JD004160.

    • Search Google Scholar
    • Export Citation
  • Handorf, D., R. Jaiser, K. Dethloff, A. Rinke, and J. Cohen, 2015: Impacts of Arctic sea ice and continental snow cover changes on atmospheric winter teleconnections. Geophys. Res. Lett., 42, 23672377, doi:10.1002/2015GL063203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea‐ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaiser, R., T. Nakamura, D. Handorf, K. Dethloff, J. Ukita, and K. Yamazaki, 2016: Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations. J. Geophys. Res., 121, 75647577, doi:10.1002/2015JD024679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., T. Ou, H. W. Linderholm, B.-M. Kim, S.-J. Kim, J.-S. Kug, and D. Chen, 2011: Recent recovery of the Siberian high intensity. J. Geophys. Res., 116, D23102, doi:10.1029/2011JD015904.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., H. W. Linderholm, S. H. Woo, C. Folland, B. M. Kim, S. J. Kim, and D. Chen, 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 19561972, doi:10.1175/JCLI-D-12-00159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser, H. F., 1958: The Varimax criterion for analytic rotations in factor analysis. Psychometrika, 23, 187200, doi:10.1007/BF02289233.

  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. P., M. Hell, and N. Keenlyside, 2016: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dyn., 46, 11851195, doi:10.1007/s00382-015-2639-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., M. Caian, G. Nikulin, and S. Schimanke, 2016: Regional Arctic sea ice variations as predictor for winter climate conditions. Climate Dyn., 46, 317337, doi:10.1007/s00382-015-2586-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., and K. Kodera, 1999: Role of planetary waves in the stratosphere–troposphere coupled variability in the Northern Hemisphere winter. Geophys. Res. Lett., 26, 23752378, doi:10.1029/1999GL900507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Yao, A. Dai, I. Simmonds, and C. L. Franzke, 2016: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 39253947, doi:10.1175/JCLI-D-15-0611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857876, doi:10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea‐ice reduction in late autumn. J. Geophys. Res., 120, 32093227, doi:10.1002/2014JD022848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita, 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett., 43, 34943501, doi:10.1002/2016GL068330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. E. Benestad, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 19691982, doi:10.1007/s00382-013-1782-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., R. Senan, F. Vitart, G. Balsamo, A. Weisheimer, and F. J. Doblas-Reyes, 2016: Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010. Climate Dyn., 47, 13251334, doi:10.1007/s00382-015-2903-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 79177932, doi:10.1175/JCLI-D-14-00822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and H. Douville, 2010: Influence of the Eurasian snow cover on the Indian summer monsoon variability in observed climatologies and CMIP3 simulations. Climate Dyn., 34, 643660, doi:10.1007/s00382-009-0565-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., H. Douville, R. Alkama, and B. Decharme, 2011: Snow contribution to springtime atmospheric predictability over the second half of the twentieth century. Climate Dyn., 37, 9851004, doi:10.1007/s00382-010-0884-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., D. Saint-Martin, and H. Douville, 2012: A numerical sensitivity study of the influence of Siberian snow on the northern annular mode. J. Climate, 25, 592607, doi:10.1175/JCLI-D-11-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., E. Brun, V. Mauvais, and H. Douville, 2013: How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? Geophys. Res. Lett., 40, 183188, doi:10.1029/2012GL054083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents–Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., A. H. Butler, J. C. Furtado, J. L. Cohen, and A. Kumar, 2013: CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Climate Dyn., 41, 10991116, doi:10.1007/s00382-013-1850-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and J. Cohen, 2003: The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys. Res. Lett., 30, 1302, doi:10.1029/2002GL016341.

    • Search Google Scholar
    • Export Citation
  • Saito, K., J. Cohen, and D. Entekhabi, 2001: Evolution of atmospheric response to early-season Eurasian snow cover anomalies. Mon. Wea. Rev., 129, 27462760, doi:10.1175/1520-0493(2001)129<2746:EOARTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Skillful long‐range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, doi:10.1002/2014GL059637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., L. J. Gray, and D. M. Mitchell, 2016: Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J. Geophys. Res., 121, 14001413, doi:10.1002/2015JD024178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., and J. M. Wallace, 2015: On the leading patterns of Northern Hemisphere sea level pressure variability. J. Atmos. Sci., 72, 34693486, doi:10.1175/JAS-D-14-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2008: Precursory changes in planetary wave activity for midwinter surface pressure anomalies over the Arctic. J. Meteor. Soc. Japan, 86, 415427, doi:10.2151/jmsj.86.415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Wea. Rev., 118, 20562081, doi:10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegmann, M., and Coauthors, 2015: Arctic moisture source for Eurasian snow cover variations in autumn. Environ. Res. Lett., 10, 054015, doi:10.1088/1748-9326/10/5/054015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Charlton‐Perez, S. Ineson, A. G. Marshall, and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 115, D06108, doi:10.1029/2009JD012742.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., and X. Zhang, 2010: Observed forcing‐feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J. Geophys. Res., 115, D14119, doi:10.1029/2009JD013574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto, K., Y. Tachibana, M. Honda, and J. Ukita, 2006: Intra‐seasonal relationship between the Northern Hemisphere sea ice variability and the North Atlantic Oscillation. Geophys. Res. Lett., 33, L14711, doi:10.1029/2006GL026286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793, doi:10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2135 1039 344
PDF Downloads 937 93 9