Reforecasting the ENSO Events in the Past 57 Years (1958–2014)

Bohua Huang Department of Atmospheric, Oceanic, and Earth Sciences, and Center for Ocean–Land–Atmosphere Studies, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Bohua Huang in
Current site
Google Scholar
PubMed
Close
,
Chul-Su Shin Department of Atmospheric, Oceanic, and Earth Sciences, and Center for Ocean–Land–Atmosphere Studies, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Chul-Su Shin in
Current site
Google Scholar
PubMed
Close
,
J. Shukla Department of Atmospheric, Oceanic, and Earth Sciences, and Center for Ocean–Land–Atmosphere Studies, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by J. Shukla in
Current site
Google Scholar
PubMed
Close
,
Lawrence Marx Department of Atmospheric, Oceanic, and Earth Sciences, and Center for Ocean–Land–Atmosphere Studies, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Lawrence Marx in
Current site
Google Scholar
PubMed
Close
,
Magdalena A. Balmaseda European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Magdalena A. Balmaseda in
Current site
Google Scholar
PubMed
Close
,
Subhadeep Halder Department of Atmospheric, Oceanic, and Earth Sciences, and Center for Ocean–Land–Atmosphere Studies, College of Science, George Mason University, Fairfax, Virginia, and K. Banerjee Center of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, India

Search for other papers by Subhadeep Halder in
Current site
Google Scholar
PubMed
Close
,
Paul Dirmeyer Department of Atmospheric, Oceanic, and Earth Sciences, and Center for Ocean–Land–Atmosphere Studies, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Paul Dirmeyer in
Current site
Google Scholar
PubMed
Close
, and
James L. Kinter III Department of Atmospheric, Oceanic, and Earth Sciences, and Center for Ocean–Land–Atmosphere Studies, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by James L. Kinter III in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A set of ensemble seasonal reforecasts for 1958–2014 is conducted using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2. In comparison with other current reforecasts, this dataset extends the seasonal reforecasts to the 1960s–70s. Direct comparison of the predictability of the ENSO events occurring during the 1960s–70s with the more widely studied ENSO events since then demonstrates the seasonal forecast system’s capability in different phases of multidecadal variability and degrees of global climate change. A major concern for a long reforecast is whether the seasonal reforecasts before 1979 provide useful skill when observations, particularly of the ocean, were sparser. This study demonstrates that, although the reforecasts have lower skill in predicting SST anomalies in the North Pacific and North Atlantic before 1979, the prediction skill of the onset and development of ENSO events in 1958–78 is comparable to that for 1979–2014. In particular, the ENSO predictions initialized in April during 1958–78 show higher skill in the summer. However, the skill of the earlier predictions declines faster in the ENSO decaying phase, because the reforecasts initialized after boreal summer persistently predict lingering wind and SST anomalies over the eastern equatorial Pacific during such events. Reforecasts initialized in boreal fall overestimate the peak SST anomalies of strong El Niño events since the 1980s. Both phenomena imply that the model’s air–sea feedback is overly active in the eastern Pacific before ENSO event termination. Whether these differences are due to changes in the observing system or are associated with flow-dependent predictability remains an open question.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bohua Huang, bhuang@gmu.edu

Abstract

A set of ensemble seasonal reforecasts for 1958–2014 is conducted using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2. In comparison with other current reforecasts, this dataset extends the seasonal reforecasts to the 1960s–70s. Direct comparison of the predictability of the ENSO events occurring during the 1960s–70s with the more widely studied ENSO events since then demonstrates the seasonal forecast system’s capability in different phases of multidecadal variability and degrees of global climate change. A major concern for a long reforecast is whether the seasonal reforecasts before 1979 provide useful skill when observations, particularly of the ocean, were sparser. This study demonstrates that, although the reforecasts have lower skill in predicting SST anomalies in the North Pacific and North Atlantic before 1979, the prediction skill of the onset and development of ENSO events in 1958–78 is comparable to that for 1979–2014. In particular, the ENSO predictions initialized in April during 1958–78 show higher skill in the summer. However, the skill of the earlier predictions declines faster in the ENSO decaying phase, because the reforecasts initialized after boreal summer persistently predict lingering wind and SST anomalies over the eastern equatorial Pacific during such events. Reforecasts initialized in boreal fall overestimate the peak SST anomalies of strong El Niño events since the 1980s. Both phenomena imply that the model’s air–sea feedback is overly active in the eastern Pacific before ENSO event termination. Whether these differences are due to changes in the observing system or are associated with flow-dependent predictability remains an open question.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bohua Huang, bhuang@gmu.edu
Save
  • Alessandri, A., A. Borrelli, A. Navarra, A. Arribas, M. Déqué, P. Rogel, and A. Weisheimer, 2011: Evaluation of probabilistic quality and value of the ENSEMBLES multimodel seasonal forecasts: Comparison with DEMETER. Mon. Wea. Rev., 139, 581607, doi:10.1175/2010MWR3417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 24192431, doi:10.1175/1520-0442(1999)012<2419:TROSAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, doi:10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055, doi:10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., M. K. Davey, and D. L. T. Anderson, 1995: Decadal and seasonal dependence of ENSO prediction skill. J. Climate, 8, 27052715, doi:10.1175/1520-0442(1995)008<2705:DASDOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., A. Vidard, and D. Anderson, 2008: The ECMWF ORA-S3 ocean analysis system. Mon. Wea. Rev., 136, 30183034, doi:10.1175/2008MWR2433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. H. Glantz, and Y. He, 1999: Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and 1998 La Niña onset. Bull. Amer. Meteor. Soc., 80, 217243, doi:10.1175/1520-0477(1999)080<0217:PSOSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, doi:10.1175/BAMS-D-11-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunge, L., and A. J. Clarke, 2014: On the warm water volume and its changing relationship with ENSO. J. Climate, 44, 13721385, doi:10.1175/JPO-D-13-062.1.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827832, doi:10.1038/321827a0.

  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736, doi:10.1038/nature02439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, doi:10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land-surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recently intensified Pacific Ocean wind-driven circulation and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. H. Philander, 2000: Is El Niño changing? Science, 288, 19972002, doi:10.1126/science.288.5473.1997.

  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2004: A technical guide to MOM4. NOAA/GFDL Ocean Group Tech. Rep. 5, 342 pp. [Available online at https://www.gfdl.noaa.gov/bibliography/related_files/smg0301.pdf.]

  • Harrison, D. E., and G. A. Vecchi, 2001: El Niño and La Niña—Equatorial Pacific thermocline depth and sea surface temperature anomalies, 1986–98. Geophys. Res. Lett., 28, 10511054, doi:10.1029/1999GL011307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA, 113, 20052010, doi:10.1073/pnas.1514182113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Niñas followed by another La Niña? Climate Dyn., 42, 10291042, doi:10.1007/s00382-013-1917-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingleby, B., and M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles—Historical and real-time data. J. Mar. Syst., 65, 158175, doi:10.1016/j.jmarsys.2005.11.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, M., A. Kumar, and A. Leetmaa, 1994: A multiseason climate forecast system at the National Meteorological Center. Bull. Amer. Meteor. Soc., 75, 569578, doi:10.1175/1520-0477(1994)075<0569:AMCFSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, doi:10.1007/s00382-008-0397-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Kalnay, E. M., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., M. J. McPhaden, and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100, 10 61310 631, doi:10.1029/95JC00382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998: Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J. Climate, 11, 32953308, doi:10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., B. Jha, and H. Wang, 2014: Attribution of SST variability in global oceans and the role of ENSO. Climate Dyn., 43, 209220, doi:10.1007/s00382-013-1865-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, and Y. Xue, 2015: An analysis of the temporal evolution of ENSO prediction skill in the context of the equatorial Pacific Ocean observing system. Mon. Wea. Rev., 143, 32043213, doi:10.1175/MWR-D-15-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, doi:10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., and G. A. Vecchi, 2010: Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Climate Dyn., 35, 299313, doi:10.1007/s00382-009-0562-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, R., 2013: In watching for El Niño and La Niña, NOAA adapts to global warming. Climate Watch. [Available online at https://www.climate.gov/news-features/understanding-climate/watching-el-niño-and-la-niña-noaa-adapts-global-warming.]

  • Lopez, H., and B. P. Kirtman, 2014: WWBs, ENSO predictability, the spring barrier and extreme events. J. Geophys. Res. Atmos., 119, 10 11410 138, doi:10.1002/2014JD021908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and B. Huang, 2009: The influence of systematic errors in the southeast Pacific on ENSO variability and prediction in a coupled GCM. Climate Dyn., 32, 10151034, doi:10.1007/s00382-008-0407-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, doi:10.1029/2012GL051826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2015: Playing hide and seek with El Niño. Nat. Climate Change, 5, 791795, doi:10.1038/nclimate2775.

  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, doi:10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., A. Timmermann, M. J. Widlansky, M. A. Balmaseda, and T. N. Stockdale, 2015: The curious case of the El Niño that never happened. Bull. Amer. Meteor. Soc., 96, 16471665, doi:10.1175/BAMS-D-14-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, doi:10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello, S. Cravatte, and G. Cambon, 2014: About the role of westerly wind events in the possible development of an El Niño in 2014. Geophys. Res. Lett., 41, 64766483, doi:10.1002/2014GL061186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogensen, K., M. A. Balmaseda, and A. T. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Tech. Memo. 668, 61 pp.

    • Crossref
    • Export Citation
  • Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (System 4). ECMWF Tech. Memo. 656, 51 pp. [Available online at www.ecmwf.int/publications/library/do/references/show?id=90277.]

  • National Research Council, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academies Press, 192 pp.

  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872, doi:10.1175/BAMS-85-6-853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, X., B. Huang, and J. Shukla, 2011: The influence of mean climate on the equatorial Pacific seasonal cycle and ENSO: Simulation and prediction experiments using CCSM3. Climate Dyn., 37, 325341, doi:10.1007/s00382-010-0923-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

  • Rui, H., and H. Beaudoing, 2015: README document for Global Land Data Assimilation System version 2 (GLDAS-2) products. NASA Goddard Earth Sciences Data and Information Services Center Tech. Doc., 23 pp.

  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Coupled Forecast System, version 2. J. Climate, 27, 21852203, doi:10.1175/JCLI-D-12-00823.1.

  • Schneider, E. K., B. Huang, Z. Zhu, D. G. DeWitt, J. L. Kinter, B. P. Kirtman, and J. Shukla, 1999: Ocean data assimilation, initialization, and predictions of ENSO with coupled GCM. Mon. Wea. Rev., 127, 11871207, doi:10.1175/1520-0493(1999)127<1187:ODAIAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and J. M. Wallace, 1983: Numerical simulation of the atmospheric response to equatorial Pacific sea surface temperature anomalies. J. Atmos. Sci., 40, 16131630, doi:10.1175/1520-0469(1983)040<1613:NSOTAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., D. L. T. Anderson, J. O. Alves, and M. A. Balmaseda, 1998: Global seasonal rainfall forecasts with a coupled ocean–atmosphere model. Nature, 392, 370373, doi:10.1038/32861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., and Coauthors, 2011: ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Climate Dyn., 37, 455471, doi:10.1007/s00382-010-0947-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and B. Dewitte, 2016: Strong and moderate nonlinear El Niño regimes. Climate Dyn., 46, 16271645, doi:10.1007/s00382-015-2665-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, P., 2011: Southern Hemisphere extra-tropical forcing: A new paradigm for El Niño–Southern Oscillation. Climate Dyn., 36, 21712199, doi:10.1007/s00382-010-0825-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303309, doi:10.1007/BF00204745.

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, doi:10.1029/97JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8, 267285, doi:10.1175/1520-0442(1995)008<0267:ICIENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, doi:10.1029/2009GL040896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531, doi:10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelle, H., G. Appeldoorn, G. Burgers, and G. J. van Oldenborgh, 2004: The relationship between sea surface temperature and thermocline depth in the eastern equatorial Pacific. J. Phys. Oceanogr., 34, 643655, doi:10.1175/2523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Niño change on decadal scale in the tropical Pacific Ocean. Nature, 391, 879883, doi:10.1038/36081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2016: Unraveling El Niño’s impact on the East Asian monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43, 11 37511 382, doi:10.1002/2016GL071190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., H. H. Hendon, O. Alves, G. Liu, and G. Wang, 2016: Weakened eastern Pacific El Niño predictability in the early twenty-first century. J. Climate, 29, 68056822, doi:10.1175/JCLI-D-15-0876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, L. Marx, J. L. Kinter III, M. A. Balmaseda, R.-H. Zhang, and Z.-Z. Hu, 2012: Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys. Res. Lett., 39, L09602, doi:10.1029/2012GL053053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, R.-H. Zhang, Z.-Z. Hu, A. Kumar, M. A. Balmaseda, L. Marx, and J. L. Kinter, 2014: Salinity anomaly as a trigger for ENSO events. Sci. Rep., 4, 6821, doi:10.1038/srep06821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., A. Kumar, B. Huang, M. A. Balmaseda, Z.-Z. Hu, L. Marx, and J. L. Kinter III, 2016: The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci. Rep., 6, 19677, doi:10.1038/srep19677.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1094 511 187
PDF Downloads 523 201 4