Investigating the Impact of CO2 on Low-Frequency Variability of the AMOC in HadCM3

Edward Armstrong School of Geographical Sciences, University of Bristol, United Kingdom

Search for other papers by Edward Armstrong in
Current site
Google Scholar
PubMed
Close
,
Paul Valdes School of Geographical Sciences, University of Bristol, United Kingdom

Search for other papers by Paul Valdes in
Current site
Google Scholar
PubMed
Close
,
Jo House School of Geographical Sciences, University of Bristol, United Kingdom

Search for other papers by Jo House in
Current site
Google Scholar
PubMed
Close
, and
Joy Singarayer Centre for Past Climate Change, and Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Joy Singarayer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the impact of CO2 on the amplitude, frequency, and mechanisms of Atlantic meridional overturning circulation (AMOC) variability in millennial simulations of the HadCM3 coupled climate model. Multichannel singular spectrum analysis (MSSA) and empirical orthogonal functions (EOFs) are applied to the AMOC at four quasi-equilibrium CO2 forcings. The amount of variance explained by the first and second eigenmodes appears to be small (i.e., 11.19%); however, the results indicate that both AMOC strength and variability weaken at higher CO2 concentrations. This accompanies an apparent shift from a predominant 100–125-yr cycle at 350 ppm to 160 yr at 1400 ppm. Changes in amplitude are shown to feed back onto the atmosphere. Variability may be linked to salinity-driven density changes in the Greenland–Iceland–Norwegian Seas, fueled by advection of anomalies predominantly from the Arctic and Caribbean regions. A positive density anomaly accompanies a decrease in stratification and an increase in convection and Ekman pumping, generating a strong phase of the AMOC (and vice versa). Arctic anomalies may be generated via an internal ocean mode that may be key in driving variability and are shown to weaken at higher CO2, possibly driving the overall reduction in amplitude. Tropical anomalies may play a secondary role in modulating variability and are thought to be more influential at higher CO2, possibly due to an increased residence time in the subtropical gyre and/or increased surface runoff driven by simulated dieback of the Amazon rain forest. These results indicate that CO2 may not only weaken AMOC strength but also alter the mechanisms that drive variability, both of which have implications for climate change on multicentury time scales.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author: Edward Armstrong, edward.armstrong@bristol.ac.uk

Abstract

This study investigates the impact of CO2 on the amplitude, frequency, and mechanisms of Atlantic meridional overturning circulation (AMOC) variability in millennial simulations of the HadCM3 coupled climate model. Multichannel singular spectrum analysis (MSSA) and empirical orthogonal functions (EOFs) are applied to the AMOC at four quasi-equilibrium CO2 forcings. The amount of variance explained by the first and second eigenmodes appears to be small (i.e., 11.19%); however, the results indicate that both AMOC strength and variability weaken at higher CO2 concentrations. This accompanies an apparent shift from a predominant 100–125-yr cycle at 350 ppm to 160 yr at 1400 ppm. Changes in amplitude are shown to feed back onto the atmosphere. Variability may be linked to salinity-driven density changes in the Greenland–Iceland–Norwegian Seas, fueled by advection of anomalies predominantly from the Arctic and Caribbean regions. A positive density anomaly accompanies a decrease in stratification and an increase in convection and Ekman pumping, generating a strong phase of the AMOC (and vice versa). Arctic anomalies may be generated via an internal ocean mode that may be key in driving variability and are shown to weaken at higher CO2, possibly driving the overall reduction in amplitude. Tropical anomalies may play a secondary role in modulating variability and are thought to be more influential at higher CO2, possibly due to an increased residence time in the subtropical gyre and/or increased surface runoff driven by simulated dieback of the Amazon rain forest. These results indicate that CO2 may not only weaken AMOC strength but also alter the mechanisms that drive variability, both of which have implications for climate change on multicentury time scales.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author: Edward Armstrong, edward.armstrong@bristol.ac.uk
Save
  • Alvarez-Garcia, F., M. Latif, and A. Biastoch, 2008: On multidecadal and quasi-decadal North Atlantic variability. J. Climate, 21, 34333452, doi:10.1175/2007JCLI1800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakker, P., P. U. Clark, N. R. Golledge, A. Schmittner, and M. Weber, 2016a: Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge. Nature, 541, 7276, doi:10.1038/nature20582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakker, P., and Coauthors, 2016b: Fate of the Atlantic meridional overturning circulation: Strong decline under continued warming and Greenland melting. Geophys. Res. Lett., 43, 12 25212 260, doi:10.1002/2016GL070457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. M. Cox, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol., 78, 157175, doi:10.1007/s00704-004-0050-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulton, C. A., P. Good, and T. M. Lenton, 2013: Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol., 6, 373384, doi:10.1007/s12080-013-0191-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattle, H., and D. Cresswell, 2000: The Arctic Ocean freshwater budget of a climate general circulation model. Freshwater Budget of the Arctic Ocean, E. L. Lewis et al., Eds., Springer, 127–139, doi:10.1007/978-94-011-4132-1_6.

    • Crossref
    • Export Citation
  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415, 863869, doi:10.1038/415863a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184187, doi:10.1038/35041539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., 2008: On multidecadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model version 3. J. Climate, 21, 55245544, doi:10.1175/2008JCLI2019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 51535172, doi:10.1175/JCLI-D-11-00463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 14811495, doi:10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 19932011, doi:10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1997: Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophys. Res. Lett., 24, 257260, doi:10.1029/96GL03927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditlevsen, P. D., and S. J. Johnsen, 2010: Tipping points: Early warning and wishful thinking. Geophys. Res. Lett., 37, L19703, doi:10.1029/2010GL044486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, K. W., T. L. Delworth, M. J. Spelman, and R. J. Stouffer, 1999: The influence of transient surface fluxes on North Atlantic overturning in a coupled GCM climate change experiment. Geophys. Res. Lett., 26, 27492752, doi:10.1029/1999GL900571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B. W., and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J. Climate, 18, 11171135, doi:10.1175/JCLI3328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and A. A. Tsonis, 1996: Singular Spectrum Analysis: A New Tool in Time Series Analysis. Springer, 164 pp.

    • Crossref
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Frankcombe, L. M., and H. A. Dijkstra, 2010: Internal modes of multidecadal variability in the Arctic Ocean. J. Phys. Oceanogr., 40, 24962510, doi:10.1175/2010JPO4487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, doi:10.1029/2000RG000092.

  • Golyandina, N., 2010: On the choice of parameters in singular spectrum analysis and related subspace-based methods. Stat. Interface, 3, 259279, doi:10.4310/SII.2010.v3.n3.a2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golyandina, N., and A. Zhigljavsky, 2013: Singular Spectrum Analysis for Time Series. Springer, 120 pp.

    • Crossref
    • Export Citation
  • Golyandina, N., and A. Korobeynikov, 2014: Basic singular spectrum analysis and forecasting with R. Comput. Stat. Data Anal., 71, 934954, doi:10.1016/j.csda.2013.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golyandina, N., V. Nekrutkin, and A. Zhigljavsky, 2001: Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall/CRC, 320 pp.

    • Crossref
    • Export Citation
  • Golyandina, N., A. Korobeynikov, A. Shlemov, and K. Usevich, 2015: Multivariate and 2D extensions of singular spectrum analysis with the Rssa package. J. Stat. Softw., 67, 178, doi:10.18637/jss.v067.i02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168, doi:10.1007/s003820050010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703, doi:10.1029/2005GL023209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. D. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28, 805830, doi:10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, P., 1988: Theoretical comparison of bootstrap confidence intervals. Ann. Stat., 16, 927953, doi:10.1214/aos/1176350933.

  • Hawkins, E., and R. Sutton, 2007: Variability of the Atlantic thermohaline circulation described by three-dimensional empirical orthogonal functions. Climate Dyn., 29, 745762, doi:10.1007/s00382-007-0263-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2008: Potential predictability of rapid changes in the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L11603, doi:10.1029/2008GL034059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., and G. A. Meehl, 2005: Bering Strait throughflow and the thermohaline circulation. Geophys. Res. Lett., 32, L24610, doi:10.1029/2005GL024424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. H., Z.-Z. Hu, E. K. Schneider, Z. H. Wu, Y. Xue, and B. Klinger, 2012: Influences of tropical–extratropical interaction on the multidecadal AMOC variability in the NCEP climate forecast system. Climate Dyn., 39, 531555, doi:10.1007/s00382-011-1258-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwi, A. M., L. Hermanson, K. Haines, and R. T. Sutton, 2012: Mechanisms linking volcanic aerosols to the Atlantic meridional overturning circulation. J. Climate, 25, 30393051, doi:10.1175/2011JCLI4067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L., and M. Vellinga, 2013: Multidecadal to centennial variability of the AMOC: HadCM3 and a perturbed physics ensemble. J. Climate, 26, 23902407, doi:10.1175/JCLI-D-11-00601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., H. Haak, M. Latif, and U. Mikolajewicz, 2005: Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18, 40134031, doi:10.1175/JCLI3462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedlacek, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, doi:10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of seasonal thermocline II. General theory and its consequences. Tellus, 19, 98, doi:10.3402/tellusa.v19i1.9753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., E. Roeckner, U. Mikolajewicz, and R. Voss, 2000: Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13, 18091813, doi:10.1175/1520-0442(2000)013<1809:L>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., T. Martin, and W. Park, 2013: Southern Ocean sector centennial climate variability and recent decadal trends. J. Climate, 26, 77677782, doi:10.1175/JCLI-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacMartin, D. G., L. Zanna, and E. Tziperman, 2016: Suppression of Atlantic meridional overturning circulation variability at increased CO2. J. Climate, 29, 41554164, doi:10.1175/JCLI-D-15-0533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhi, Y., and Coauthors, 2009: Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. USA, 106, 20 61020 615, doi:10.1073/pnas.0804619106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1997: Coupled ocean–atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography, 12, 321336, doi:10.1029/96PA03932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and P. H. Stone, 1995: Atmospheric transports, the thermohaline circulation, and flux adjustments in a simple coupled model. J. Phys. Oceanogr., 25, 13501364, doi:10.1175/1520-0485(1995)025<1350:ATTTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, T., W. Park, and M. Latif, 2013: Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Climate Dyn., 40, 20052022, doi:10.1007/s00382-012-1586-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., W. Park, K. Lohmann, M. Vellinga, M. D. Palmer, M. Latif, and J. H. Jungclaus, 2012: A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Climate Dyn., 38, 23772388, doi:10.1007/s00382-011-1172-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., and C. Frankignoul, 2005: The variability of the Atlantic meridional overturning circulation, the North Atlantic Oscillation, and the El Ninõ–Southern Oscillation in the Bergen climate model. J. Climate, 18, 23612375, doi:10.1175/JCLI3405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikolajewicz, U., and R. Voss, 2000: The role of the individual air–sea flux components in CO2-induced changes of the ocean’s circulation and climate. Climate Dyn., 16, 627642, doi:10.1007/s003820000066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2002: Stabilization of climate regimes by noise in a simple model of the thermohaline circulation. J. Phys. Oceanogr., 32, 20722085, doi:10.1175/1520-0485(2002)032<2072:SOCRBN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., R. Vautard, and M. Ghil, 1998: Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Climate Dyn., 14, 545569, doi:10.1007/s003820050241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., and C. Frankignoul, 2009: Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Climate Dyn., 33, 4562, doi:10.1007/s00382-008-0452-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., W. E. Johns, S. G. Yeager, G. Danabasoglu, T. L. Delworth, and A. Rosati, 2013: The Atlantic meridional heat transport at 26.5°N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. J. Climate, 26, 43354356, doi:10.1175/JCLI-D-12-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterå, O. H., M. Bentsen, H. Drange, and L. L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688694, doi:10.1038/ngeo955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pardaens, A. K., H. T. Banks, J. M. Gregory, and P. R. Rowntree, 2003: Freshwater transports in HadCM3. Climate Dyn., 21, 177195, doi:10.1007/s00382-003-0324-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, W., and M. Latif, 2008: Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys. Res. Lett., 35, L22703, doi:10.1029/2008GL035779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plaut, G., and R. Vautard, 1994: Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51, 210236, doi:10.1175/1520-0469(1994)051<0210:SOLFOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plaut, G., M. Ghil, and R. Vautard, 1995: Interannual and interdecadal variability in 335 years of central England temperatures. Science, 268, 710713, doi:10.1126/science.268.5211.710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378, 145149, doi:10.1038/378145a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., F. K. Garry, and L. C. Jackson, 2013: A multimodel study of sea surface temperature and subsurface density fingerprints of the Atlantic meridional overturning circulation. J. Climate, 26, 91559174, doi:10.1175/JCLI-D-12-00762.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., R. Marsh, A. L. New, and R. A. Wood, 1996: An intercomparison of a Bryan–Cox-type ocean model and an isopycnic ocean model. Part I: The subpolar gyre and high-latitude processes. J. Phys. Oceanogr., 26, 14951527, doi:10.1175/1520-0485(1996)026<1495:AIOABT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaller, N., I. Mahlstein, J. Cermak, and R. Knutti, 2011: Analyzing precipitation projections: A comparison of different approaches to climate model evaluation. J. Geophys. Res., 116, D10118, doi:10.1029/2010JD014963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmittner, A., C. Appenzeller, and T. F. Stocker, 2000: Enhanced Atlantic freshwater export during El Niño. Geophys. Res. Lett., 27, 11631166, doi:10.1029/1999GL011048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeed, D., G. McCarthy, D. Rayner, B. I. Moat, W. E. Johns, M. Baringer, and C. S. Meinen, 2015: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26°N from 2004 to 2014. British Oceanographic Data Centre, Natural Environment Research Council, doi:10.5285/35784047-9b82-2160-e053-6c86abc0c91b.

    • Crossref
    • Export Citation
  • Stenchikov, G., T. L. Delworth, V. Ramaswamy, R. J. Stouffer, A. Wittenberg, and F. R. Zeng, 2009: Volcanic signals in oceans. J. Geophys. Res., 114, D16104, doi:10.1029/2008JD011673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230, doi:10.3402/tellusa.v13i2.9491.

  • Swingedouw, D., P. Braconnot, P. Delecluse, E. Guilyardi, and O. Marti, 2007: Quantifying the AMOC feedbacks during a 2×CO2 stabilization experiment with land-ice melting. Climate Dyn., 29, 521534, doi:10.1007/s00382-007-0250-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., J. Mignot, S. Labetoulle, E. Guilyardi, and G. Madec, 2014: Initialisation and predictability of the AMOC over the last 50 years in a climate model. Climate Dyn., 42, 555556, doi:10.1007/s00382-013-2005-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, R. B., 2005: The impact of changes in atmospheric and land surface physics on the thermohaline circulation response to anthropogenic forcing in HadCM2 and HadCM3. Climate Dyn., 24, 449456, doi:10.1007/s00382-004-0493-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, R. B., J. M. Gregory, T. C. Johns, R. A. Wood, and J. F. B. Mitchell, 2001: Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Climate, 14, 31023116, doi:10.1175/1520-0442(2001)014<3102:MDTATC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., M. Latif, R. Voss, and A. Grotzner, 1998: Northern Hemispheric interdecadal variability: A coupled air–sea mode. J. Climate, 11, 19061931, doi:10.1175/1520-0442-11.8.1906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1993: Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds? The Global Carbon Cycle, M. Heimann, Ed., Springer, 303–331, doi:10.1007/978-3-642-84608-3_13.

    • Crossref
    • Export Citation
  • Tziperman, E., 1997: Inherently unstable climate behaviour due to weak thermohaline ocean circulation. Nature, 386, 592595, doi:10.1038/386592a0.

  • Tziperman, E., J. R. Toggweiler, Y. Feliks, and K. Bryan, 1994: Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models? J. Phys. Oceanogr., 24, 217232, doi:10.1175/1520-0485(1994)024<0217:IOTTCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., and Coauthors, 2017: The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev., doi:10.5194/gmd-2017-16, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., P. Yiou, and M. Ghil, 1992: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58, 95126, doi:10.1016/0167-2789(92)90103-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and P. L. Wu, 2004: Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J. Climate, 17, 44984511, doi:10.1175/3219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J. S., P. Müller, R. J. Stouffer, R. Voss, and S. F. B. Tett, 2000: Variability of deep-ocean mass transport: Spectral shapes and spatial scales. J. Climate, 13, 19161935, doi:10.1175/1520-0442(2000)013<1916:VODOMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiesenfeld, K., and B. McNamara, 1986: Small-signal amplification in bifurcating dynamical systems. Phys. Rev., 33A, 629642, doi:10.1103/PhysRevA.33.629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 6582, doi:10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2006: Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J. Phys. Oceanogr., 36, 20122024, doi:10.1175/JPO2957.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., C. Timmreck, H. F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Kruger, and J. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419444, doi:10.1007/s00382-011-1167-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., and J. Jungclaus, 2008: Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Climate Dyn., 31, 731741, doi:10.1007/s00382-008-0383-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 363 112 8
PDF Downloads 180 42 6