A Satellite-Derived Lower-Tropospheric Atmospheric Temperature Dataset Using an Optimized Adjustment for Diurnal Effects

Carl A. Mears Remote Sensing Systems, Santa Rosa, California

Search for other papers by Carl A. Mears in
Current site
Google Scholar
PubMed
Close
and
Frank J. Wentz Remote Sensing Systems, Santa Rosa, California

Search for other papers by Frank J. Wentz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Temperature sounding microwave radiometers flown on polar-orbiting weather satellites provide a long-term, global-scale record of upper-atmosphere temperatures, beginning in late 1978 and continuing to the present. The focus of this paper is a lower-tropospheric temperature product constructed using measurements made by the Microwave Sounding Unit channel 2 and the Advanced Microwave Sounding Unit channel 5. The temperature weighting functions for these channels peak in the middle to upper troposphere. By using a weighted average of measurements made at different Earth incidence angles, the effective weighting function can be lowered so that it peaks in the lower troposphere. Previous versions of this dataset used general circulation model output to remove the effects of drifting local measurement time on the measured temperatures. This paper presents a method to optimize these adjustments using information from the satellite measurements themselves. The new method finds a global-mean land diurnal cycle that peaks later in the afternoon, leading to improved agreement between measurements made by co-orbiting satellites. The changes result in global-scale warming [global trend (70°S–80°N, 1979–2016) = 0.174°C decade−1], ~30% larger than our previous version of the dataset [global trend (70°S–80°N, 1979–2016) = 0.134°C decade−1]. This change is primarily due to the changes in the adjustment for drifting local measurement time. The new dataset shows more warming than most similar datasets constructed from satellites or radiosonde data. However, comparisons with total column water vapor over the oceans suggest that the new dataset may not show enough warming in the tropics.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://doi.org/10.1175/JCLI-D-16-0768.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carl A. Mears, mears@remss.com

Abstract

Temperature sounding microwave radiometers flown on polar-orbiting weather satellites provide a long-term, global-scale record of upper-atmosphere temperatures, beginning in late 1978 and continuing to the present. The focus of this paper is a lower-tropospheric temperature product constructed using measurements made by the Microwave Sounding Unit channel 2 and the Advanced Microwave Sounding Unit channel 5. The temperature weighting functions for these channels peak in the middle to upper troposphere. By using a weighted average of measurements made at different Earth incidence angles, the effective weighting function can be lowered so that it peaks in the lower troposphere. Previous versions of this dataset used general circulation model output to remove the effects of drifting local measurement time on the measured temperatures. This paper presents a method to optimize these adjustments using information from the satellite measurements themselves. The new method finds a global-mean land diurnal cycle that peaks later in the afternoon, leading to improved agreement between measurements made by co-orbiting satellites. The changes result in global-scale warming [global trend (70°S–80°N, 1979–2016) = 0.174°C decade−1], ~30% larger than our previous version of the dataset [global trend (70°S–80°N, 1979–2016) = 0.134°C decade−1]. This change is primarily due to the changes in the adjustment for drifting local measurement time. The new dataset shows more warming than most similar datasets constructed from satellites or radiosonde data. However, comparisons with total column water vapor over the oceans suggest that the new dataset may not show enough warming in the tropics.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://doi.org/10.1175/JCLI-D-16-0768.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carl A. Mears, mears@remss.com

Supplementary Materials

    • Supplemental Materials (PDF 1.93 MB)
Save
  • Bock, O., P. Willis, J. Wang, and C. Mears, 2014: A high-quality, homogenized, global, long-term (1993–2008) DORIS precipitable water data set for climate monitoring and model verification. J. Geophys. Res. Atmos., 119, 72097230, doi:10.1002/2013JD021124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and F. J. Wentz, 2005: Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull. Amer. Meteor. Soc., 86, 10971115, doi:10.1175/BAMS-86-8-1097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christy, J. R., R. W. Spencer, and W. D. Braswell, 2000: MSU tropospheric temperatures: Dataset construction and radiosonde comparisons. J. Atmos. Oceanic Technol., 17, 11531170, doi:10.1175/1520-0426(2000)017<1153:MTTDCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christy, J. R., R. W. Spencer, W. B. Norris, W. D. Braswell, and D. E. Parker, 2003: Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperatures. J. Atmos. Oceanic Technol., 20, 613629, doi:10.1175/1520-0426(2003)20<613:EEOVOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Free, M., D. J. Seidel, J. K. Angell, J. R. Lanzante, I. Durre, and T. C. Peterson, 2005: Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new dataset of large-area anomaly time series. J. Geophys. Res., 110, D22101, doi:10.1029/2005JD006169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20, 13771403, doi:10.1175/JCLI4050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haimberger, L., C. Tavolato, and S. Sperka, 2008: Toward elimination of the warm bias in historic radiosonde temperature records—Some new results from a comprehensive intercomparison of upper-air data. J. Climate, 21, 45874606, doi:10.1175/2008JCLI1929.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 81088131, doi:10.1175/JCLI-D-11-00668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2006: The new Hadley Centre climate model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19, 13271353, doi:10.1175/JCLI3712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, 152 pp., doi:10.5065/D6FF3Q99.

    • Crossref
    • Export Citation
  • Lanzante, J. R., S. Klein, and D. J. Seidel, 2003: Temporal homogenization of monthly radiosonde temperature data. Part II: Trends, sensitivities, and MSU comparison. J. Climate, 16, 241262, doi:10.1175/1520-0442(2003)016<0241:THOMRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Q., and W. Bell, 2014: Characterizing channel center frequencies in AMSU-A and MSU microwave sounding instruments. J. Atmos. Oceanic Technol., 31, 17131732, doi:10.1175/JTECH-D-13-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model, HadGEM1. Part I: Model description and global climatology. J. Climate, 19, 12741301, doi:10.1175/JCLI3636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mears, C. A., and F. J. Wentz, 2009a: Construction of the Remote Sensing Systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. J. Atmos. Oceanic Technol., 26, 10401056, doi:10.1175/2008JTECHA1176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mears, C. A., and F. J. Wentz, 2009b: Construction of the RSS V3.2 lower tropospheric dataset from the MSU and AMSU microwave sounders. J. Atmos. Oceanic Technol., 26, 14931509, doi:10.1175/2009JTECHA1237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mears, C. A., and F. J. Wentz, 2016: Sensitivity of satellite-derived tropospheric temperature trends to the diurnal cycle adjustment. J. Climate, 29, 36293646, doi:10.1175/JCLI-D-15-0744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mears, C. A., B. D. Santer, F. J. Wentz, K. E. Taylor, and M. F. Wehner, 2007: Relationship between temperature and precipitable water changes over tropical oceans. Geophys. Res. Lett., 34, L24709, doi:10.1029/2007GL031936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mears, C. A., F. J. Wentz, P. Thorne, and D. Bernie, 2011: Assessing uncertainty in estimates of atmospheric temperature changes from MSU and AMSU using a Monte-Carlo estimation technique. J. Geophys. Res., 116, D08112, doi:10.1029/2010JD014954.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., F. J. Wentz, and P. Thorne, 2012: Assessing the value of Microwave Sounding Unit–radiosonde comparisons in ascertaining errors in climate data records of tropospheric temperatures. J. Geophys. Res., 117, D19103, doi:10.1029/2012JD017710.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., J. Wang, D. Smith, and F. J. Wentz, 2015: Intercomparison of total precipitable water measurements made by satellite-borne microwave radiometers and ground-based GPS instruments. J. Geophys. Res., 120, 24922504, doi:10.1002/2014JD022694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. J. Wentz, 2012: The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and Earth incidence angles. IEEE Trans. Geosci. Remote Sens., 50, 30043026, doi:10.1109/TGRS.2011.2179662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Po-Chedley, S., and Q. Fu, 2012: A bias in the midtropospheric channel warm target factor on the NOAA-9 Microwave Sounding Unit. J. Atmos. Oceanic Technol., 29, 646652, doi:10.1175/JTECH-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Po-Chedley, S., T. J. Thorsen, and Q. Fu, 2015: Removing diurnal cycle contamination in satellite-derived tropospheric temperatures: Understanding tropical tropospheric trend discrepancies. J. Climate, 28, 22742290, doi:10.1175/JCLI-D-13-00767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., C. L. Meyer, R. J. Allen, and H. A. Titcher, 2008: Robust tropospheric warming revealed by iteratively homogenized radiosonde data. J. Climate, 21, 53365352, doi:10.1175/2008JCLI2320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and J. R. Christy, 1992: Precision and radiosonde validation of satellite gridpoint temperature anomalies. Part II: A tropospheric retrieval and trends during 1979–1990. J. Climate, 5, 858866, doi:10.1175/1520-0442(1992)005<0858:PARVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., J. R. Christy, and W. D. Braswell, 2017: UAH version 6 global satellite temperature products: Methodology and results. Asia-Pac. J. Atmos. Sci., 53, 121130, doi:10.1007/s13143-017-0010-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., D. E. Parker, S. F. B. Tett, P. D. Jones, M. McCarthy, H. Coleman, and P. Brohan, 2005: Revisiting radiosonde upper-air temperatures from 1958 to 2002. J. Geophys. Res., 110, D18105, doi:10.1029/2004JD005753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and Coauthors, 2011: A quantification of uncertainties in historical tropical tropospheric temperature trends from radiosondes. J. Geophys. Res., 116, D12116, doi:10.1029/2010JD015487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., P. W. Thorne, M. P. McCarthy, S. F. B. Tett, L. Haimberger, and D. E. Parker, 2009: Critically reassessing tropospheric temperature trends from radiosondes using realistic validation experiments. J. Climate, 22, 465485, doi:10.1175/2008JCLI2419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 2015: A 17-yr climate record of environmental parameters derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. J. Climate, 28, 68826902, doi:10.1175/JCLI-D-15-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 16131627, doi:10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and M. C. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403, 414416, doi:10.1038/35000184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and T. Meissner, 2016: Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations. Radio Sci., 51, 381391, doi:10.1002/2015RS005858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., and W. Wang, 2011: Intersatellite calibration of AMSU-A observations for weather and climate applications. J. Geophys. Res., 116, D23113, doi:10.1029/2011JD016205.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8317 1734 379
PDF Downloads 2816 401 49