Performance of CMIP3 and CMIP5 GCMs to Simulate Observed Rainfall Characteristics over the Western Himalayan Region

Jitendra Kumar Meher Department of Agricultural Meteorology and Physics, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India

Search for other papers by Jitendra Kumar Meher in
Current site
Google Scholar
PubMed
Close
,
Lalu Das Department of Agricultural Meteorology and Physics, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India

Search for other papers by Lalu Das in
Current site
Google Scholar
PubMed
Close
,
Javed Akhter Department of Physics, Jadavpur University, Kolkata, India

Search for other papers by Javed Akhter in
Current site
Google Scholar
PubMed
Close
,
Rasmus E. Benestad Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by Rasmus E. Benestad in
Current site
Google Scholar
PubMed
Close
, and
Abdelkader Mezghani Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by Abdelkader Mezghani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The western Himalayan region (WHR) was subject to a significant negative trend in the annual and monsoon rainfall during 1902–2005. Annual and seasonal rainfall change over the WHR of India was estimated using 22 rain gauge station rainfall data from the India Meteorological Department. The performance of 13 global climate models (GCMs) from phase 3 of the Coupled Model Intercomparison Project (CMIP3) and 42 GCMs from CMIP5 was evaluated through multiple analysis: the evaluation of the mean annual cycle, annual cycles of interannual variability, spatial patterns, trends, and signal-to-noise ratio. In general, CMIP5 GCMs were more skillful in terms of simulating the annual cycle of interannual variability compared to CMIP3 GCMs. The CMIP3 GCMs failed to reproduce the observed trend, whereas approximately 50% of the CMIP5 GCMs reproduced the statistical distribution of short-term (30 yr) trend estimates than for the longer-term (99 yr) trends from CMIP5 GCMs. GCMs from both CMIP3 and CMIP5 were able to simulate the spatial distribution of observed rainfall in premonsoon and winter months. Based on performance, each model of CMIP3 and CMIP5 was given an overall rank, which puts the high-resolution version of the MIROC3.2 model [MIROC3.2 (hires)] and MIROC5 at the top in CMIP3 and CMIP5, respectively. Robustness of the ranking was judged through a sensitivity analysis, which indicated that ranks were independent during the process of adding or removing any individual method. It also revealed that trend analysis was not a robust method of judging performances of the models as compared to other methods.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0774.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lalu Das, daslalu@yahoo.co.in

Abstract

The western Himalayan region (WHR) was subject to a significant negative trend in the annual and monsoon rainfall during 1902–2005. Annual and seasonal rainfall change over the WHR of India was estimated using 22 rain gauge station rainfall data from the India Meteorological Department. The performance of 13 global climate models (GCMs) from phase 3 of the Coupled Model Intercomparison Project (CMIP3) and 42 GCMs from CMIP5 was evaluated through multiple analysis: the evaluation of the mean annual cycle, annual cycles of interannual variability, spatial patterns, trends, and signal-to-noise ratio. In general, CMIP5 GCMs were more skillful in terms of simulating the annual cycle of interannual variability compared to CMIP3 GCMs. The CMIP3 GCMs failed to reproduce the observed trend, whereas approximately 50% of the CMIP5 GCMs reproduced the statistical distribution of short-term (30 yr) trend estimates than for the longer-term (99 yr) trends from CMIP5 GCMs. GCMs from both CMIP3 and CMIP5 were able to simulate the spatial distribution of observed rainfall in premonsoon and winter months. Based on performance, each model of CMIP3 and CMIP5 was given an overall rank, which puts the high-resolution version of the MIROC3.2 model [MIROC3.2 (hires)] and MIROC5 at the top in CMIP3 and CMIP5, respectively. Robustness of the ranking was judged through a sensitivity analysis, which indicated that ranks were independent during the process of adding or removing any individual method. It also revealed that trend analysis was not a robust method of judging performances of the models as compared to other methods.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0774.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lalu Das, daslalu@yahoo.co.in

Supplementary Materials

    • Supplemental Materials (DOCX 799.52 KB)
Save
  • Akhter, J., L. Das, and A. Deb, 2016: CMIP5 ensemble-based spatial rainfall projection over homogeneous zones of India. Climate Dyn., doi:10.1007/s00382-016-3409-8, in press.

    • Search Google Scholar
    • Export Citation
  • Akhter, J., L. Das, J. K. Meher, and A. Deb, 2017: Uncertainties and time of emergence of multi-model precipitation projection over homogeneous zones of India. Climate Dyn., doi:10.1007/s00382-017-3847-y, in press.

    • Search Google Scholar
    • Export Citation
  • Anandhi, A., and R. S. Nanjundiah, 2015: Performance evaluation of AR4 climate models in simulating daily precipitation over the Indian region using skill scores. Theor. Appl. Climatol., 119, 551566, doi:10.1007/s00704-013-1043-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andermann, C., S. Bonnet, and R. Gloaguen, 2011: Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosyst., 12, Q07023, doi:10.1029/2011GC003513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 10711092, doi:10.1175/JCLI4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, M., P. Singh, N. K. Goel, and R. D. Singh, 2006: Spatial distribution and seasonal variability of rainfall in a mountainous basin in the Himalayan region. Water Resour. Manage., 20, 489508, doi:10.1007/s11269-006-8773-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azadi, M., U. C. Mohanty, O. P. Madan, and B. Padmanabhamurty, 2002: Prediction of precipitation associated with a western disturbance using a high-resolution regional model: Role of parameterisation of physical processes. Meteor. Appl., 9, 317326, doi:10.1017/S1350482702003055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. Lauritzen, and J. Caron, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, doi:10.1175/JCLI-D-13-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baniya, C. B., H. Rai, and D. K. Upreti, 2013: Terricolous lichens in Himalayas: Patterns of species richness along elevation gradient. Terricolous Lichens in India, H. Rai and D. Upreti, Eds., Springer, 33–52, doi:10.1007/978-1-4614-8736-4_3.

    • Crossref
    • Export Citation
  • Barros, A. P., and T. J. Lang, 2003: Monitoring the monsoon in the Himalayas: Observations in central Nepal, June 2001. Mon. Wea. Rev., 131, 14081427, doi:10.1175/1520-0493(2003)131<1408:MTMITH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., S. Chiao, T. J. Lang, D. Burbank, and J. Putkonen, 2006: From weather to climate—Seasonal and interannual variability of storms and implications for erosion processes in the Himalaya. Special Paper 398: Tectonics, Climate, and Landscape Evolution, 17–38, doi:10.1130/s2006.2398(02).

    • Crossref
    • Export Citation
  • Basistha, A., D. S. Arya, and N. K. Goel, 2008: Spatial distribution of rainfall in Indian Himalayas—A case study of Uttarakhand region. Water Resour. Manage., 22, 13251346, doi:10.1007/s11269-007-9228-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basistha, A., D. S. Arya, and N. K. Goel, 2009: Analysis of historical changes in rainfall in the Indian Himalayas. Int. J. Climatol., 29, 555572, doi:10.1002/joc.1706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., A. Mezghani, and K. M. Parding, 2014: esd for Mac & Linux/esd for Windows, version 17. figshare. [Available online at http://figshare.com/articles/esd_for_Mac_amp_Linux/1160493.]

  • Beniston, M., 2003: Climatic change in mountain regions: A review of possible impacts. Global Climate Variability and Change in High Elevation Regions: Past, Present & Future, H. F. Diaz, Ed., Springer, 5–31, doi:10.1007/978-94-015-1252-7_2.

    • Crossref
    • Export Citation
  • Bhatt, B. C., and K. Nakamura, 2005: Characteristics of monsoon rainfall around the Himalayas revealed by TRMM Precipitation Radar. Mon. Wea. Rev., 133, 149165, doi:10.1175/MWR-2846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhutiyani, M. R., V. S. Kale, and N. J. Pawar, 2007: Long-term trends in maximum, minimum and mean annual air temperatures across the northwestern Himalaya during the twentieth century. Climatic Change, 85, 159177, doi:10.1007/s10584-006-9196-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhutiyani, M. R., V. S. Kale, and N. J. Pawar, 2009: Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int. J. Climatol., 30, 535548, doi:10.1002/joc.1920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blázquez, J., and M. N. Nuñez, 2013: Performance of a high resolution global model over southern South America. Int. J. Climatol., 33, 904919, doi:10.1002/joc.3478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, doi:10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and D. W. Burbank, 2010: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res., 115, F03019, doi:10.1029/2009JF001426.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and J. V. Hurley, 2013: Thermodynamic bias in the multimodel mean boreal summer monsoon. J. Climate, 26, 22792287, doi:10.1175/JCLI-D-12-00493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, J., and S. A. Klein, 2010: Impact of model horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J. Geophys. Res., 115, D23113, doi:10.1029/2010JD014262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, H. J. Fowler, S. Blenkinsop, C. A. Ferro, and D. B. Stephenson, 2013: Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Climate Dyn., 41, 14751495, doi:10.1007/s00382-012-1568-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charles, S. P., F. Chiew, and H. Zeng, 2016: Climate change and water in South Asia—Overview and literature review. CSIRO Sustainable Development Investment Portfolio Project Rep., 36 pp. [Available online at https://publications.csiro.au/rpr/download?pid=csiro:EP156957&dsid=DS3.]

  • Das, L., and D. Lohar, 2005: Construction of climate change scenarios for a tropical monsoon region. Climate Res., 30, 3952, doi:10.3354/cr030039.

  • Das, L., J. Annan, J. Hargreaves, and S. Emori, 2012: Improvements over three generations of climate model simulations for eastern India. Climate Res., 51, 201216, doi:10.3354/cr01064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, L., M. Dutta, J. K. Meher, and J. Akhter, 2016a: Temperature Change Scenarios over the Chilika Lagoon of India during 1901-2100. J. Climate Change, 2, 114, doi:10.3233/JCC-160001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, L., J. K. Meher, and M. Dutta, 2016b: Construction of rainfall change scenarios over the Chilka Lagoon in India. Atmos. Res., 182, 3645, doi:10.1016/j.atmosres.2016.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, L., M. Dutta, A. Mezghani, and R. E. Benestad, 2017: Use of observed temperature statistics in ranking CMIP5 model performance over the Western Himalayan Region of India. Int. J. Climatol., doi:10.1002/joc.5193.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimri, A. P., 2012: Atmospheric water budget over the western Himalayas in a regional climate model. J. Earth Syst. Sci., 121, 963973, doi:10.1007/s12040-012-0204-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimri, A. P., and A. Ganju, 2007: Wintertime seasonal scale simulation over western Himalaya using RegCM3. Pure Appl. Geophys., 164, 17331746, doi:10.1007/s00024-007-0239-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimri, A. P., and S. K. Dash, 2012: Wintertime climatic trends in the western Himalayas. Climatic Change, 111, 775800, doi:10.1007/s10584-011-0201-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimri, A. P., D. Niyogi, A. P. Barros, J. Ridley, U. C. Mohanty, T. Yasunari, and D. R. Sikka, 2015: Western disturbances: A review. Rev. Geophys., 53, 225246, doi:10.1002/2014RG000460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimri, A. P., T. Yasunari, B. S. Kotlia, U. C. Mohanty, and D. R. Sikka, 2016: Indian winter monsoon: Present and past. Earth-Sci. Rev., 163, 297322, doi:10.1016/j.earscirev.2016.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolinar, E. K., X. Dong, B. Xi, J. H. Jiang, and H. Su, 2015: Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Climate Dyn., 44, 22292247, doi:10.1007/s00382-014-2158-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, K., T. Yao, and L. G. Thompson, 2006: Response of monsoon precipitation in the Himalayas to global warming. J. Geophys. Res., 111, D19110, doi:10.1029/2006JD007084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, J. M., E. M. Biggs, J. Dash, and P. M. Atkinson, 2013: Spatio-temporal trends in precipitation and their implications for water resources management in climate-sensitive Nepal. Appl. Geophys., 43, 138146.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., 2011: Earth system models: An overview. Wiley Interdiscip Rev.: Climate Change, 2, 783800, doi:10.1002/wcc.148.

  • Fontaine, B., P. Roucou, and P. A. Monerie, 2011: Changes in the African monsoon region at medium-term time horizon using 12 AR4 coupled models under the A1b emissions scenario. Atmos. Sci. Lett., 12, 8388, doi:10.1002/asl.321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., Z. Liu, S. P. Charles, Z. Xu, and Z. Yao, 2013: A score-based method for assessing the performance of GCMs: A case study of southeastern Australia. J. Geophys. Res. Atmos., 118, 41544167, doi:10.1002/jgrd.50269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gautam, M. R., G. R. Timilsina, and K. Acharya, 2013: Climate change in the Himalayas: Current state of knowledge. World Bank Policy Research Working Paper 6516, 64 pp., doi:10.1596/1813-9450-6516.

    • Crossref
    • Export Citation
  • Giorgi, F., X. Bi, and J. Pal, 2004: Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Climate Dyn., 22, 733756, doi:10.1007/s00382-004-0409-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guhathakurta, P., and M. Rajeevan, 2008: Trends in the rainfall pattern over India. Int. J. Climatol., 28, 14531469, doi:10.1002/joc.1640.

  • Hasson, S., V. Lucarini, and S. Pascale, 2013: Hydrological cycle over south and southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst. Dyn., 4, 199217, doi:10.5194/esd-4-199-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasson, S., V. Lucarini, S. Pascale, and J. Böhner, 2014: Seasonality of the hydrological cycle in major South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst. Dyn., 5, 6787, doi:10.5194/esd-5-67-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasson, S., S. Pascale, V. Lucarini, and J. Böhner, 2016: Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections. Atmos. Res., 180, 4263, doi:10.1016/j.atmosres.2016.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henson, S. A., C. Beaulieu, and R. Lampitt, 2016: Observing climate change trends in ocean biogeochemistry: When and where. Global Change Biol., 22, 15611571, doi:10.1111/gcb.13152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higuchi, K., Y. Ageta, T. Yasunari, and J. Inoue, 1982: Characteristics of precipitation during the monsoon season in high-mountain areas of the Nepal Himalaya. IAHS Publ., 138, 2130.

    • Search Google Scholar
    • Export Citation
  • Hingray, B., and M. Saïd, 2014: Partitioning internal variability and model uncertainty components in a multimember multimodel ensemble of climate projections. J. Climate, 27, 67796798, doi:10.1175/JCLI-D-13-00629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W., 2008: Historical trends and future predictions of climate variability in the Brahmaputra basin. Int. J. Climatol., 28, 243254, doi:10.1002/joc.1528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • Jain, S. K., and V. Kumar, 2012: Trend analysis of rainfall and temperature data for India. Curr. Sci., 102, 3749.

  • Jain, S. K., V. Kumar, and M. Saharia, 2013: Analysis of rainfall and temperature trends in northeast India. Int. J. Climatol., 33, 968978, doi:10.1002/joc.3483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joetzjer, E., H. Douville, C. Delire, and P. Ciais, 2013: Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Climate Dyn., 41, 29212936, doi:10.1007/s00382-012-1644-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., A. Sen Gupta, A. S. Taschetto, C. C. Ummenhofer, A. F. Moise, and K. Ashok, 2013: The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Climate Dyn., 41, 30733102, doi:10.1007/s00382-013-1676-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kansakar, S. R., D. M. Hannah, J. Gerrard, and G. Rees, 2004: Spatial pattern in the precipitation regime of Nepal. Int. J. Climatol., 24, 16451659, doi:10.1002/joc.1098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1957: Rank correlation methods. Biometrika, 44, 298, doi:10.2307/2333282.

  • Khan, A. R., 2001: Searching evidence for climatic change: Analysis of hydro-meteorological time series in the Upper Indus Basin. International Water Management Institute Rep. IWMI Working Paper 23, 31 pp., doi:10.3910/2009.152.

    • Crossref
    • Export Citation
  • Kripalani, R. H., A. Kulkarni, and S. S. Sabade, 2003: Western Himalayan snow cover and Indian monsoon rainfall: A re-examination with INSAT and NCEP/NCAR data. Theor. Appl. Climatol., 74, 118, doi:10.1007/s00704-002-0699-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., J. H. Oh, A. Kulkarni, S. S. Sabade, and H. S. Chaudhari, 2007: South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 90, 133159, doi:10.1007/s00704-006-0282-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., and A. K. Jaswal, 2016: Historical temporal variation in precipitation over western Himalayan region: 1857-2006. J. Mt. Sci., 13, 672681, doi:10.1007/s11629-014-3194-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., and O. Arakawa, 2015: Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Climate, 28, 56015621, doi:10.1175/JCLI-D-14-00585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafaysse, M., B. Hingray, A. Mezghani, J. Gailhard, and L. Terray, 2014: Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin. Water Resour. Res., 50, 33173341, doi:10.1002/2013WR014897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and A. P. Barros, 2004: Winter storms in the central Himalayas. J. Meteor. Soc. Japan, 82, 829844, doi:10.2151/jmsj.2004.829.

  • Lee, J. Y., and Coauthors, 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Climate Dyn., 35, 267283, doi:10.1007/s00382-010-0857-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245, doi:10.2307/1907187.

  • Maraun, D., 2013: When will trends in European mean and heavy daily precipitation emerge? Environ. Res. Lett., 8, 014004, doi:10.1088/1748-9326/8/1/014004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meher, J. K., L. Das, and J. Akhter, 2014: Future rainfall change scenarios simulated through AR4 and AR5 GCMs over the Western Himalayan Region. J. Agrometeor., 16 (Special Issue I), 5358.

    • Search Google Scholar
    • Export Citation
  • Meher, J. K., L. Das, and V. J. Singh, 2016: Analysis of trends in monsoon rainfall and its influence on productivity of Kharif rice: A district wide latest update. Crop Productivity and Plant Disease Management, A. Chauhan, P. K. Bharti, and D. Sadana, Eds., Discovery Publishing House, 60–77.

  • Mehrotra, R., A. Sharma, D. N. Kumar, and T. Reshmidevi, 2013: Assessing future rainfall projections using multiple GCMs and a multi-site stochastic downscaling model. J. Hydrol., 488, 84100, doi:10.1016/j.jhydrol.2013.02.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, C., Q. Duan, L. Yang, and A. G. L. Borthwick, 2012: On the applicability of temperature and precipitation data from CMIP3 for China. PLoS One, 7, doi:10.1371/journal.pone.0044659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nautiyal, J. C., and P. S. Babor, 1985: Forestry in the Himalayas: How to avert an environmental disaster. Interdiscip. Sci. Rev., 10, 2741, doi:10.1179/isr.1985.10.1.27.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negi, G. C. S., P. K. Samal, J. C. Kuniyal, B. P. Kothyari, R. K. Sharma, and P. P. Dhyani, 2012: Impact of climate change on the western Himalayan mountain ecosystems: An overview. Trop. Ecol., 53, 345356.

    • Search Google Scholar
    • Export Citation
  • Notz, D., 2015: How well must climate models agree with observations? Philos. Trans. Roy. Soc. London, 373A, 20140164, doi:10.1098/rsta.2014.0164.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., L. Sridhar, M. Rajeevan, O. P. Sreejith, N. S. Satbhai, and B. Mukhopadhyay, 2014: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. MAUSAM, 65, 118.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409, doi:10.1175/BAMS-88-9-1395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palazzi, E., J. V. Hardenberg, and A. Provenzale, 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, doi:10.1029/2012JD018697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palazzi, E., J. V. Hardenberg, S. Terzago, and A. Provenzale, 2015: Precipitation in the Karakoram-Himalaya: A CMIP5 view. Climate Dyn., 45, 2145, doi:10.1007/s00382-014-2341-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palutikof, J. P., J. A. Winkler, C. M. Goodess, and J. A. Andresen, 1997: The simulation of daily temperature time series from GCM output. Part I: Comparison of model data with observations. J. Climate, 10, 24972513, doi:10.1175/1520-0442(1997)010<2497:TSODTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panday, P. K., J. Thibeault, and K. E. Frey, 2015: Changing temperature and precipitation extremes in the Hindu Kush-Himalayan region: An analysis of CMIP3 and CMIP5 simulations and projections. Int. J. Climatol., 35, 30583077, doi:10.1002/joc.4192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panthi, J., and Coauthors, 2015: Spatial and temporal variability of rainfall in the Gandaki River basin of Nepal Himalaya. Climate, 3, 210226, doi:10.3390/cli3010210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pervez, M. S., and G. M. Henebry, 2014: Projections of the Ganges–Brahmaputra precipitation—Downscaled from GCM predictors. J. Hydrol., 517, 120134, doi:10.1016/j.jhydrol.2014.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2014: R: A Language and Environment for Statistical Computing. R Core Team R Foundation for Statistical Computing, Vienna, Austria.

  • Raju, K., and D. N. Kumar, 2014: Ranking of global climate models for India using multicriterion analysis. Climate Res., 60, 103117, doi:10.3354/cr01222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raju, K., and D. N. Kumar, 2015: Ranking general circulation models for India using TOPSIS. J. Water Climate Change, 6, 288299, doi:10.2166/wcc.2014.074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2005: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA, 102, 53265333, doi:10.1073/pnas.0500656102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramesh, K. V., and P. Goswami, 2014: Assessing reliability of regional climate projections: The case of Indian monsoon. Sci. Rep., 4, 4071, doi:10.1038/srep04071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, M., N. Doshi, N. Alag, and R. Sreedhar, 2011: Climate vulnerability in north western Himalayas: A contribution to the ongoing nation-wide climate studies. Environics Trust Indian Network on Ethics and Climate Change Rep., 50 pp.

  • Saha, A., S. Ghosh, A. S. Sahana, and E. P. Rao, 2014: Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon. Geophys. Res. Lett., 41, 73237330, doi:10.1002/2014GL061573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salzmann, M., H. Weser, and R. Cherian, 2014: Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models. J. Geophys. Res. Atmos., 119, 11 32111 337, doi:10.1002/2014JD021783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanap, S. D., and G. Pandithurai, 2015: The effect of absorbing aerosols on Indian monsoon circulation and rainfall: A review. Atmos. Res., 164–165, 318327, doi:10.1016/j.atmosres.2015.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaller, N., I. Mahlstein, J. Cermak, and R. Knutti, 2011: Analyzing precipitation projections: A comparison of different approaches to climate model evaluation. J. Geophys. Res., 116, D10118, doi:10.1029/2010JD014963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönwiese, C.-D., and J. Rapp, 1997: Climate Trend Atlas of Europe Based on Observations 1891–1990. Springer, 228 pp., doi:10.1007/978-94-015-8818-8.

    • Crossref
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shashikanth, K., K. Salvi, S. Ghosh, and K. Rajendran, 2014: Do CMIP5 simulations of Indian summer monsoon rainfall differ from those of CMIP3? Atmos. Sci. Lett., 15, 7985, doi:10.1002/asl2.466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shekhar, M., H. Chand, S. Kumar, K. Srinivasan, and A. Ganju, 2010: Climate-change studies in the western Himalaya. Ann. Glaciol., 51, 105112, doi:10.3189/172756410791386508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, A. B., and L. P. Devkota, 2010: Climate change in the eastern Himalayas: Observed trends and model projections; climate change impact and vulnerability in the eastern Himalayas. ICIMOD Tech. Rep. 1, 20 pp.

  • Shrestha, A. B., C. P. Wake, J. E. Dibb, and P. A. Mayewski, 2000: Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. Int. J. Climatol., 20, 317327, doi:10.1002/(SICI)1097-0088(20000315)20:3<317::AID-JOC476>3.0.CO;2-G.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, J., R. R. Yadav, and M. Wilmking, 2009: A 694-year tree-ring based rainfall reconstruction from Himachal Pradesh, India. Climate Dyn., 33, 11491158, doi:10.1007/s00382-009-0528-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, P., and N. Kumar, 1997: Effect of orography on precipitation in the western Himalayan region. J. Hydrol., 199, 183206, doi:10.1016/S0022-1694(96)03222-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, P., K. S. Ramasastri, and N. Kumar, 1995: Topographical influence on precipitation distribution in different ranges of western Himalayas. Hydrol. Res., 26, 259284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, R. B., and S. Mal, 2014: Trends and variability of monsoon and other rainfall seasons in western Himalaya, India. Atmos. Sci. Lett., 15, 218226, doi:10.1002/asl2.494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, V., and M. K. Goyal, 2016: Analysis and trends of precipitation lapse rate and extreme indices over north Sikkim eastern Himalayas under CMIP5 ESM-2M RCPs experiments. Atmos. Res., 167, 3460, doi:10.1016/j.atmosres.2015.07.005.

    • Crossref
    • Search Google Scholar