Toward a New Estimate of “Time of Emergence” of Anthropogenic Warming: Insights from Dynamical Adjustment and a Large Initial-Condition Model Ensemble

Flavio Lehner Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Flavio Lehner in
Current site
Google Scholar
PubMed
Close
,
Clara Deser Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Clara Deser in
Current site
Google Scholar
PubMed
Close
, and
Laurent Terray CECI, Université de Toulouse, CERFACS/CNRS, Toulouse, France

Search for other papers by Laurent Terray in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Time of emergence of anthropogenic climate change is a crucial metric in risk assessments surrounding future climate predictions. However, internal climate variability impairs the ability to make accurate statements about when climate change emerges from a background reference state. None of the existing efforts to explore uncertainties in time of emergence has explicitly explored the role of internal atmospheric circulation variability. Here a dynamical adjustment method based on constructed circulation analogs is used to provide new estimates of time of emergence of anthropogenic warming over North America and Europe from both a local and spatially aggregated perspective. After removing the effects of internal atmospheric circulation variability, the emergence of anthropogenic warming occurs on average two decades earlier in winter and one decade earlier in summer over North America and Europe. Dynamical adjustment increases the percentage of land area over which warming has emerged by about 30% and 15% in winter (10% and 5% in summer) over North America and Europe, respectively. Using a large ensemble of simulations with a climate model, evidence is provided that thermodynamic factors related to variations in snow cover, sea ice, and soil moisture are important drivers of the remaining uncertainty in time of emergence. Model biases in variability lead to an underestimation (13%–22% over North America and <5% over Europe) of the land fraction emerged by 2010 in summer, indicating that the forced warming signal emerges earlier in observations than suggested by models. The results herein illustrate opportunities for future detection and attribution studies to improve physical understanding by explicitly accounting for internal atmospheric circulation variability.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0792.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Flavio Lehner, flehner@ucar.edu

Abstract

Time of emergence of anthropogenic climate change is a crucial metric in risk assessments surrounding future climate predictions. However, internal climate variability impairs the ability to make accurate statements about when climate change emerges from a background reference state. None of the existing efforts to explore uncertainties in time of emergence has explicitly explored the role of internal atmospheric circulation variability. Here a dynamical adjustment method based on constructed circulation analogs is used to provide new estimates of time of emergence of anthropogenic warming over North America and Europe from both a local and spatially aggregated perspective. After removing the effects of internal atmospheric circulation variability, the emergence of anthropogenic warming occurs on average two decades earlier in winter and one decade earlier in summer over North America and Europe. Dynamical adjustment increases the percentage of land area over which warming has emerged by about 30% and 15% in winter (10% and 5% in summer) over North America and Europe, respectively. Using a large ensemble of simulations with a climate model, evidence is provided that thermodynamic factors related to variations in snow cover, sea ice, and soil moisture are important drivers of the remaining uncertainty in time of emergence. Model biases in variability lead to an underestimation (13%–22% over North America and <5% over Europe) of the land fraction emerged by 2010 in summer, indicating that the forced warming signal emerges earlier in observations than suggested by models. The results herein illustrate opportunities for future detection and attribution studies to improve physical understanding by explicitly accounting for internal atmospheric circulation variability.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0792.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Flavio Lehner, flehner@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.35 MB)
Save
  • Bador, M., L. Terray, and J. Boé, 2016: Emergence of human influence on summer record-breaking temperatures over Europe. Geophys. Res. Lett., 43, 404412, doi:10.1002/2015GL066560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaumont, L. J., A. Pitman, S. Perkins, N. E. Zimmermann, N. G. Yoccoz, and W. Thuiller, 2011: Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl. Acad. Sci. USA, 108, 23062311, doi:10.1073/pnas.1007217108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Boé, J., and L. Terray, 2014: Land–sea contrast, soil–atmosphere and cloud–temperature interactions: Interplays and roles in future summer European climate change. Climate Dyn., 42, 683699, doi:10.1007/s00382-013-1868-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 12411256, doi:10.1175/MWR-D-11-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Terray, and A. S. Phillips, 2016: Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications. J. Climate, 29, 22372258, doi:10.1175/JCLI-D-15-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 547554, doi:10.1002/2013GL058499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nat. Climate Change, 3, 10331038, doi:10.1038/nclimate2051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and X. Bi, 2009: Time of emergence (TOE) of GHG-forced precipitation change hot-spots. Geophys. Res. Lett., 36, L06709, doi:10.1029/2009GL037593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, L. J., D. J. Frame, E. M. Fischer, E. Hawkins, M. Joshi, and C. D. Jones, 2016: Poorest countries experience earlier anthropogenic emergence of daily temperature extremes. Environ. Res. Lett., 11, 055007, doi:10.1088/1748-9326/11/5/055007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett., 39, L01702, doi:10.1029/2011GL050087.

  • Hawkins, E., and Coauthors, 2014: Uncertainties in the timing of unprecedented climates. Nature, 511, E3E5, doi:10.1038/nature13523.

  • Hawkins, E., R. S. Smith, J. M. Gregory, and D. A. Stainforth, 2016: Irreducible uncertainty in near-term climate projections. Climate Dyn., 46, 38073819, doi:10.1007/s00382-015-2806-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23, 665668, doi:10.1029/96GL00459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project : A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, K. M., F. Joos, and C. C. Raible, 2014: Time of emergence of trends in ocean biogeochemistry. Biogeosciences, 11, 36473659, doi:10.5194/bg-11-3647-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., and Coauthors, 2015: The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett., 10, 094015, doi:10.1088/1748-9326/10/9/094015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., M. T. Black, S.-K. Min, E. M. Fischer, D. M. Mitchell, L. J. Harrington, and S. E. Perkins-Kirkpatrick, 2016: Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett., 43, 34383443, doi:10.1002/2015GL067448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, O., F. Schenk, F. Feser, and R. Weisse, 2013: Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J. Climate, 26, 868874, doi:10.1175/JCLI-D-12-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., and T. F. Stocker, 2015: From local perception to global perspective. Nat. Climate Change, 5, 731734, doi:10.1038/nclimate2660.

  • Lehner, F., A. Born, C. C. Raible, and T. F. Stocker, 2013: Amplified inception of European Little Ice Age by sea ice–ocean–atmosphere feedbacks. J. Climate, 26, 75867602, doi:10.1175/JCLI-D-12-00690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, and B. M. Sanderson, 2017: Future risk of record-breaking summer temperatures and its mitigation. Climatic Change, doi:10.1007/s10584-016-1616-2, in press.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., R. Knutti, S. Solomon, and R. W. Portmann, 2011: Early onset of significant local warming in low latitude countries. Environ. Res. Lett., 6, 034009, doi:10.1088/1748-9326/6/3/034009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., G. Hegerl, and S. Solomon, 2012: Emerging local warming signals in observational data. Geophys. Res. Lett., 39, L21711, doi:10.1029/2012GL053952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLeod, E., R. Salm, A. Green, and J. Almany, 2009: Designing marine protected area networks to address the impacts of climate change. Front. Ecol. Environ, 7, 362370, doi:10.1890/070211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, A. L., and S. P. Xie, 2016: Summer U.S. surface air temperature variability: Controlling factors and AMIP simulation biases. J. Climate, 29, 51235139, doi:10.1175/JCLI-D-15-0705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, E., 2005: Insurance in a climate of change. Science, 309, 10401044, doi:10.1126/science.1112121.

  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, doi:10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raible, C. C., F. Lehner, J. F. González-Rouco, and L. Fernández-Donado, 2014: Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD. Climate Past, 10, 537550, doi:10.5194/cp-10-537-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockström, J., and Coauthors, 2009: A safe operating space for humanity. Nature, 461, 472475, doi:10.1038/461472a.

  • Rohde, R., and Coauthors, 2013: Berkeley Earth temperature averaging process. Geoinfo. Geostat. Overview, 1 (2), doi:10.4172/2327-4581.1000103.

    • Search Google Scholar
    • Export Citation
  • Scherer, M., and N. S. Diffenbaugh, 2014: Transient twenty-first century changes in daily-scale temperature extremes in the United States. Climate Dyn., 42, 13831404, doi:10.1007/s00382-013-1829-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholze, M., W. Knorr, N. W. Arnell, and I. C. Prentice, 2006: A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA, 103, 13 11613 120, doi:10.1073/pnas.0601816103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, doi:10.1007/s00382-013-1830-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2013: Impact of soil moisture–climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett., 40, 52125217, doi:10.1002/grl.50956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, doi:10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., J. M. Wallace, P. Lin, and Q. Fu, 2015: Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and application to observations. J. Climate, 28, 16131629, doi:10.1175/JCLI-D-14-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorokina, S. A., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: Observed atmospheric coupling between Barents Sea ice and the warm-Arctic cold-Siberian anomaly pattern. J. Climate, 29, 495511, doi:10.1175/JCLI-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and R. E. Davis, 2007: Winter jet stream trends over the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 133, 21092115, doi:10.1002/qj.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 78247845, doi:10.1175/JCLI-D-15-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, P. D. Jones, and J. J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22, 61206141, doi:10.1175/2009JCLI3089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2012: NOAA’s merged land–ocean surface temperature analysis. Bull. Amer. Meteor. Soc., 93, 16771685, doi:10.1175/BAMS-D-11-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Q. Fu, B. V. Smoliak, P. Lin, and C. M. Johanson, 2012: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proc. Natl. Acad. Sci. USA, 109, 14 33714 342, doi:10.1073/pnas.1204875109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586, doi:10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4045 1643 78
PDF Downloads 1788 435 34