Insights from a New High-Resolution Drought Atlas for the Caribbean Spanning 1950–2016

Dimitris Herrera Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Dimitris Herrera in
Current site
Google Scholar
PubMed
Close
and
Toby Ault Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Toby Ault in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate change is expected to increase the severity and frequency of drought in the Caribbean. Understanding drought variability and its trends is therefore critical for improving resiliency and adaptation capacity of this region, as well as for assessing the dynamics and predictability of regional hydroclimate across spatial and temporal scales. This work introduces a first of its kind high-resolution drought dataset for the Caribbean region from 1950 to 2016, using monthly estimates of the “self calibrating” Palmer drought severity index (scPDSI), with the physically based Penman–Monteith approximation for the potential evapotranspiration. Statistically downscaled data products, including reanalysis, are employed to establish an historical baseline for characterizing drought from 1950 to the near present. Since 1950, the Caribbean has been affected by severe droughts in 1974–77, 1997/98, 2009/10, and 2013–16. Results indicate that the 2013–16 drought is the most severe event during the time interval analyzed in this work, which agrees with qualitative reports of many meteorological institutions across the Caribbean. Linear trends in the scPDSI show a significant drying in the study area, averaging an scPDSI change of −0.09 decade−1 (p < 0.05). However, this trend is not homogenous, and significant trends toward wetter conditions in portions of the study area were observed. Results further indicate a strong influence of both tropical Pacific and North Atlantic oceans in modulating drought variability across the study domain. Finally, this effort is the first step in building high-resolution drought products for the Caribbean to be updated regularly, with the purpose of drought monitoring and eventually seasonal drought prediction.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dimitris Herrera, dah386@cornell.edu

Abstract

Climate change is expected to increase the severity and frequency of drought in the Caribbean. Understanding drought variability and its trends is therefore critical for improving resiliency and adaptation capacity of this region, as well as for assessing the dynamics and predictability of regional hydroclimate across spatial and temporal scales. This work introduces a first of its kind high-resolution drought dataset for the Caribbean region from 1950 to 2016, using monthly estimates of the “self calibrating” Palmer drought severity index (scPDSI), with the physically based Penman–Monteith approximation for the potential evapotranspiration. Statistically downscaled data products, including reanalysis, are employed to establish an historical baseline for characterizing drought from 1950 to the near present. Since 1950, the Caribbean has been affected by severe droughts in 1974–77, 1997/98, 2009/10, and 2013–16. Results indicate that the 2013–16 drought is the most severe event during the time interval analyzed in this work, which agrees with qualitative reports of many meteorological institutions across the Caribbean. Linear trends in the scPDSI show a significant drying in the study area, averaging an scPDSI change of −0.09 decade−1 (p < 0.05). However, this trend is not homogenous, and significant trends toward wetter conditions in portions of the study area were observed. Results further indicate a strong influence of both tropical Pacific and North Atlantic oceans in modulating drought variability across the study domain. Finally, this effort is the first step in building high-resolution drought products for the Caribbean to be updated regularly, with the purpose of drought monitoring and eventually seasonal drought prediction.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dimitris Herrera, dah386@cornell.edu
Save
  • Allen, R., and Coauthors, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp.

  • Alley, W. M., 1984: The Palmer Drought Severity Index: Limitations and assumptions. J. Climate Appl. Meteor., 23, 11001109, doi:10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amador, J. A., H. G. Hidalgo, E. J. Alfaro, A. M. Durán-Quesada, and B. Calderón, 2016: Regional climates: Central America and the Caribbean [in “State of the Climate in 2015”]. Bull. Amer. Meteor. Soc., 97, S178S181, doi:10.1175/2016BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Ault, T. R., J. E. Cole, J. T. Overpeck, G. T. Pederson, and D. M. Meko, 2014: Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J. Climate, 27, 75297549, doi:10.1175/JCLI-D-12-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ault, T. R., J. S. Mankin, B. I. Cook, and J. E. Smerdon, 2016: Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Sci. Adv., 2, e1600873, doi:10.1126/sciadv.1600873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blunden, J., and D. S. Arndt, Eds., 2016: State of the Climate in 2015. Bull. Amer. Meteor. Soc., 97, S1S275, doi:10.1175/2016BAMSStateoftheClimate.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. D., M. A. Taylor, T. S. Stephenson, R. A. Watson, and F. S. Whyte, 2011: Future climate of the Caribbean from a regional climate model. Int. J. Climatol., 31, 18661878, doi:10.1002/joc.2200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, doi:10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, doi:10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., E. R. Cook, J. E. Smerdon, R. Seager, A. P. Williams, S. Coats, D. W. Stahle, and J. V. Díaz, 2016: North American megadroughts in the Common Era: Reconstructions and simulations. Wiley Interdiscip. Rev.: Climate Change, 7, 411432, doi:10.1002/wcc.394.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

  • Dai, A., and T. Zhao, 2017: Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Climatic Change, doi:10.1007/s10584-016-1705-2, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., K. Trenberth, and T. Qian, 2004: A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, doi:10.1175/JHM-386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris, 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22, 99113, doi:10.3354/cr022099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., and Coauthors, 2008: Physiographically sensitive mapping of temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DRNA, 2016: Informe sobre la sequía de 2014–2016 en Puerto Rico. Departamento de Recursos Naturales y Ambientales del Estado Libre Asociado de Puerto Rico (DRNA), División de Monitoreo del Plan de Aguas, San Juan, Puerto Rico, 92 pp.

  • Enfield, D. B., and E. J. Alfaro, 1999: The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J. Climate, 12, 20932103, doi:10.1175/1520-0442(1999)012<2093:TDOCRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, 2016: Situation report: Dry corridor in Central America. Food and Agriculture Organization of the United Nations, 3 pp. [Available online at http://www.fao.org/emergencies/resources/documents/resources-detail/en/c/422097/.]

  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, doi:10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., Y. Kushnir, and M. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297311, doi:10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., M. A. Cane, and Y. Kushnir, 2001a: Interdecadal changes in the ENSO teleconnection to the Caribbean region and the North Atlantic Oscillation. J. Climate, 14, 28672879, doi:10.1175/1520-0442(2001)014<2867:ICITET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., J. C. Chiang, M. A. Cane, Y. Kushnir, and R. Seager, 2001b: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14, 45304544, doi:10.1175/1520-0442(2001)014<4530:TETTTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Global Soil Data Task Group, 2000: Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS). Distributed Active Archive Center, Oak Ridge National Laboratory, doi:10.3334/ORNLDAAC/569.

    • Crossref
    • Export Citation
  • Guttman, N. B., J. R. Wallis, and J. R. M. Hosking, 1992: Spatial comparability of the Palmer Drought Severity Index. J. Amer. Water Resour. Assoc., 28, 11111119, doi:10.1111/j.1752-1688.1992.tb04022.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations: The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165, doi:10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, doi:10.1002/joc.1276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holding, S., D. M. Allen, S. Foster, A. Hsieh, I. Larocque, J. Klassen, and S. C. Van Pelt, 2016: Groundwater vulnerability on small islands. Nat. Climate Change, 6, 11001103, doi:10.1038/nclimate3128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howitt, R. E., J. Medellín-Azuara, D. MacEwan, J. R. Lund, and D. Sumner, 2014: Economic analysis of the 2014 drought for California agriculture. Tech. Rep., Center for Watershed Sciences, University of California, Davis, 20 pp. [Available online at https://watershed.ucdavis.edu/2014-drought-report.]

  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IMN, 2016: Pronóstico: Fenómeno ENOS y estación lluviosa 2016. Instituto Meteorológico Nacional de Costa Rica (IMN), San José, Costa Rica, 14 pp. [Available online at https://www.imn.ac.cr/web/imn/43.]

  • IPCC, 2014: Climate Change 2014: Synthesis Report. R. K. Pachauri and L. A. Meyer, Eds., IPCC, 151 pp.

  • Izzo, M., 2011: Analisi del clima e delle dinamiche climatiche nella Repubblica Dominicana e delle relative influenze sul territorio. Ph.D. thesis, University of Molise, Italy, 162 pp.

  • Izzo, M., C. M. Rosskopf, P. P. C. Aucelli, A. Maratea, R. Méndez, C. Pérez, and H. Segura, 2010: A new climatic map of the Dominican Republic based on the Thornthwaite classification. Phys. Geogr., 31, 455472, doi:10.2747/0272-3646.31.5.455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M., B. A. Malmgren, and A. Winter, 2007: Subregional precipitation climate of the Caribbean and relationships with ENSO and NAO. J. Geophys. Res., 112, D16107, doi:10.1029/2006JD007541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karger, D. N., and Coauthors, 2016: Climatologies at High Resolution for the Earth’s Land Surface Areas. 20 pp. [Available online at https://arxiv.org/abs/1607.00217.]

  • Karmalkar, A. V., R. S. Bradley, and H. F. Díaz, 2011: Climate change in Central America and Mexico: Regional climate model validation and climate change projections. Climate Dyn., 37, 605629, doi:10.1007/s00382-011-1099-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., J. P. Donnelly, and K. J. Anchukaitis, 2016: Future freshwater stress for island populations. Nat. Climate Change, 6, 720725, doi:10.1038/nclimate2987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, M. C., 2000: Analysis of 20th century rainfall and streamflow to characterize drought and water resources in Puerto Rico. Phys. Geogr., 21, 494521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leander, R., and T. A. Buishand, 2007: Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol., 332, 487496, doi:10.1016/j.jhydrol.2006.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931951, doi:10.1175/JCLI-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. Schumacher, 2011: Modulation of Caribbean precipitation by the Madden–Julian oscillation. J. Climate, 24, 813824, doi:10.1175/2010JCLI3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and Coauthors, 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, doi:10.5194/hess-14-1125-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology. Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Méndez, M., and V. Magaña, 2010: Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Climate, 23, 11751188, doi:10.1175/2009JCLI3080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. 19th Symp. of the Society for Experimental Biology, Swansea, England, Society for Experimental Biology, 205–234.

  • Mosier, T. M., D. F. Hill, and K. V. Sharp, 2014: 30-arcsecond monthly climate surfaces with global land coverage. Int. J. Climatol., 34, 21752188, doi:10.1002/joc.3829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, R., and Coauthors, 2013: Berkeley Earth temperature averaging process. Geoinfo. Geostat. Overview, 1 (2), doi:10.4172/2327-4581.1000103.

    • Search Google Scholar
    • Export Citation
  • OCHA, 2015: Drought in Central America in 2015: Situation report (as of October 6, 2015). United Nations Office for the Coordination of Humanitarian Affairs (OCHA). [Available online at http://www.redhum.org/uploads/ documentos/pdf/Sitrep_OCHA-ROLAC_Drought_in_CA_EN_061015-20151006-AL-17144.pdf.]

  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp.

  • Panofsky, H. A., and G. W. Brier, 1968: Some Applications of Statistics to Meteorology. Pennsylvania State University Press, 224 pp.

  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193, 120145, doi:10.1098/rspa.1948.0037.

    • Search Google Scholar
    • Export Citation
  • Peters, E. J., 2015: The 2009/2010 Caribbean drought: A case study. Disasters, 39, 738761, doi:10.1111/disa.12123.

  • Rauscher, S. A., and Coauthors, 2008: Extension and intensification of the Meso-American mid-summer drought in the twenty-first century. Climate Dyn., 31, 551571, doi:10.1007/s00382-007-0359-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013: A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinfo. Geostat. Overview, 1 (1), doi:10.4172/2327-4581.1000101.

    • Search Google Scholar
    • Export Citation
  • Roth, D. M., 2008: Hurricane Flora (1963) rainfall graphic. Tropical cyclone point maxima, National Weather Service. Accessed 9 June 2012. [Available online at http://www.wpc.ncep.noaa.gov/tropical/rain/flora1963filledrainblk.gif.]

  • Sahay, R., 2005: Stabilization, debt, and fiscal policy in the Caribbean. International Monetary Fund, Working Paper 05/26, 43 pp. [Available online at https://www.imf.org/external/pubs/ft/wp/2005/wp0526.pdf.]

    • Crossref
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2015a: GPCC full data reanalysis version 7.0 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data, doi:10.5676/DWD_GPCC/FD_M_V7_100.

    • Crossref
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, and M. Ziese, 2015b: GPCC monitoring product: Near real-time monthly land-surface precipitation from rain-gauges based on SYNOP and CLIMAT data, doi:10.5676/DWD_GPCC/MP_M_V5_100.

    • Crossref
    • Export Citation
  • Schultz, D. M., W. E. Bracken, and L. F. Bosart, 1998: Planetary and synoptic-scale signatures associated with Central American cold surges. Mon. Wea. Rev., 126, 527, doi:10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, doi:10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., B. I. Cook, E. R. Cook, and R. Seager, 2015: Bridging past and future climate across paleoclimatic reconstructions, observations, and models: A hydroclimate case study. J. Climate, 28, 32123231, doi:10.1175/JCLI-D-14-00417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, T. S., and Coauthors, 2014: Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int. J. Climatol., 34, 29572971, doi:10.1002/joc.3889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, T. S., and Coauthors, 2016: Regional climates: The Caribbean [in “State of the Climate in 2015”]. Bull. Amer. Meteor. Soc., 97, S181S182, doi:10.1175/2016BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., D. B. Enfield, and A. A. Chen, 2002: Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J. Geophys. Res., 107, 3127, doi:10.1029/2001JC001097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 5594, doi:10.2307/210739.

  • van der Schrier, G., P. D. Jones, and K. R. Briffa, 2011: The sensitivity of the PDSI to the Thornthwaite and Penman–Monteith parameterizations for potential evapotranspiration. J. Geophys. Res., 116, D03106, doi:10.1029/2010JD015001.

    • Search Google Scholar
    • Export Citation
  • van der Schrier, G., J. Barichivich, K. R. Briffa, and P. D. Jones, 2013: A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos., 118, 40254048, doi:10.1002/jgrd.50355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, doi:10.1175/2009JCLI2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer drought severity index. J. Climate, 17, 23352351, doi:10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., M. D. Svoboda, and M. J. Hayes, 2007: Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manage., 21, 763774, doi:10.1007/s11269-006-9076-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett., 42, 68196828, doi:10.1002/2015GL064924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2015: The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Climate, 28, 44904512, doi:10.1175/JCLI-D-14-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2017: Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes. Climatic Change, doi:10.1007/s10584-016-1742-x, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2760 775 84
PDF Downloads 1495 409 19