Detection and Attribution of Multivariate Climate Change Signals Using Discriminant Analysis and Bayesian Theorem

Heiko Paeth Institute of Geography and Geology, University of Würzburg, Würzburg, Germany

Search for other papers by Heiko Paeth in
Current site
Google Scholar
PubMed
Close
,
Felix Pollinger Institute of Geography and Geology, University of Würzburg, Würzburg, Germany

Search for other papers by Felix Pollinger in
Current site
Google Scholar
PubMed
Close
, and
Christoph Ring Institute of Geography and Geology, University of Würzburg, Würzburg, Germany

Search for other papers by Christoph Ring in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Detection and attribution methods in climatological research aim at assessing whether observed climate anomalies and trends are still consistent with the range of natural climate variations or rather an indication of anthropogenic climate change. In this study, the authors pursue a novel approach by using discriminant analysis to enhance the distinction between past and future climates from state-of-the-art climate model simulations. The method is based on multivariate fingerprints that are defined in the space of several prominent climate indices representing the thermal, dynamical, and hygric aspects of climate change. Attribution is carried out by means of a Bayesian classification approach.

The leading discriminant function accounts for more than 99% of total discriminability, with temperature variables, extratropical precipitation, and extratropical circulation modes mainly contributing to the discriminant power. The misclassification probability between probability density functions of past and future climates is substantially reduced by the discriminant analysis: from >50% to <15%. Since the mid-1980s, the observed anomalies of the considered climate indices are more or less consistently attributed to a climate under strong radiative forcing, projected for the first half of the twenty-first century. The authors also assess the sensitivity of their results to different emissions scenarios from the CMIP3 and CMIP5 multimodel ensembles, seasons, prior probabilities for the early twenty-first-century climate, estimates of the observational error, low-pass filters, variable compositions, group numbers, and reference data.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Heiko Paeth, heiko.paeth@uni-wuerzburg.de

Abstract

Detection and attribution methods in climatological research aim at assessing whether observed climate anomalies and trends are still consistent with the range of natural climate variations or rather an indication of anthropogenic climate change. In this study, the authors pursue a novel approach by using discriminant analysis to enhance the distinction between past and future climates from state-of-the-art climate model simulations. The method is based on multivariate fingerprints that are defined in the space of several prominent climate indices representing the thermal, dynamical, and hygric aspects of climate change. Attribution is carried out by means of a Bayesian classification approach.

The leading discriminant function accounts for more than 99% of total discriminability, with temperature variables, extratropical precipitation, and extratropical circulation modes mainly contributing to the discriminant power. The misclassification probability between probability density functions of past and future climates is substantially reduced by the discriminant analysis: from >50% to <15%. Since the mid-1980s, the observed anomalies of the considered climate indices are more or less consistently attributed to a climate under strong radiative forcing, projected for the first half of the twenty-first century. The authors also assess the sensitivity of their results to different emissions scenarios from the CMIP3 and CMIP5 multimodel ensembles, seasons, prior probabilities for the early twenty-first-century climate, estimates of the observational error, low-pass filters, variable compositions, group numbers, and reference data.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Heiko Paeth, heiko.paeth@uni-wuerzburg.de
Save
  • Bernardo, J. M., and A. F. M. Smith, 1994: Bayesian Theory. John Wiley and Sons, 586 pp.

    • Crossref
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Broccoli, A. J., N.-C. Lau, and M. J. Nath, 1998: The cold ocean–warm land pattern: Model simulation and relevance to climate change detection. J. Climate, 11, 27432763, doi:10.1175/1520-0442(1998)011<2743:TCOWLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Curry, J., 2011: Reasoning about climate uncertainty. Climatic Change, 108, 723732, doi:10.1007/s10584-011-0180-z.

  • DeGaetano, A. T., M. E. Hirsch, and S. J. Colucci, 2002: Statistical prediction of seasonal East Coast winter storm frequency. J. Climate, 15, 11011117, doi:10.1175/1520-0442(2002)015<1101:SPOSEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926, doi:10.1175/2010JCLI3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., and Coauthors, 2001: Global temperature change and its uncertainties since 1861. Geophys. Res. Lett., 28, 26212624, doi:10.1029/2001GL012877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N. V., V. Krishnamurti, and H. Annmalai, 1999: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611633, doi:10.1002/qj.49712555412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannart, A., 2016: Integrated optimal fingerprint: Method description and illustration. J. Climate, 29, 19771998, doi:10.1175/JCLI-D-14-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, doi:10.1007/s00382-010-0810-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., P. A. Stott, M. R. Allen, J. F. B. Mitchell, S. F. B. Tett, and U. Cubasch, 2000: Optimal detection and attribution of climate change: Sensitivity of results to climate model differences. Climate Dyn., 16, 737754, doi:10.1007/s003820000071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., T. J. Crowley, M. Allen, W. T. Hyde, H. N. Pollack, J. Smerdon, and E. Zorita, 2007a: Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Climate, 20, 650666, doi:10.1175/JCLI4011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007b: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Hogan, J., 2005: Warming debate highlights poor data. Nature, 436, 896, doi:10.1038/436896a.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imbers, J., A. Lopez, C. Huntingford, and M. R. Allen, 2014: Sensitivity of climate change detection and attribution to the characterization of internal climate variability. J. Climate, 27, 34773491, doi:10.1175/JCLI-D-12-00622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Ivanov, M. A., and S. N. Evtimov, 2010: 1963: The break point of the Northern Hemisphere temperature trend during the twentieth century. Int. J. Climatol., 30, 17381746, doi:10.1002/joc.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, L., and T. DelSole, 2012: Optimal determination of time-varying climate change signals. J. Climate, 25, 71227137, doi:10.1175/JCLI-D-11-00434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keupp, L., F. Pollinger, and H. Paeth, 2016: Assessment of future ENSO changes in a CMIP3/CMIP5 multi-model and multi-index framework. Int. J. Climatol., 37, 34393451, doi:10.1002/joc.4928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedlâc̆ek, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, doi:10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., and J. G. Anderson, 2010: Optimal detection of regional trends using global data. J. Climate, 23, 44384446, doi:10.1175/2010JCLI3550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, 2000: Emission Scenarios. Cambridge University Press, 570 pp.

  • Paeth, H., and A. Hense, 2001: Signal analysis of the atmospheric mean 500/1000 hPa temperature north of 55°N between 1949 and 1994. Climate Dyn., 18, 345358, doi:10.1007/s003820100179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paeth, H., and F. Pollinger, 2010: Enhanced evidence in climate models for changes in extratropical atmospheric circulation. Tellus, 62A, 647660, doi:10.1111/j.1600-0870.2010.00455.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paeth, H., and B. Mannig, 2013: On the added value of regional climate modelling in climate change assessment. Climate Dyn., 41, 10571066, doi:10.1007/s00382-012-1517-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paeth, H., M. Rauthe, and S.-K. Min, 2008: Multi-model Bayesian assessment of climate change in the northern annular mode. Global Planet. Change, 60, 193206, doi:10.1016/j.gloplacha.2007.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paeth, H., C. Steger, and C. Merkenschlager, 2013: Climate change—It’s all about probability. Erdkunde, 67, 203222, doi:10.3112/erdkunde.2013.03.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paxian, A., and Coauthors, 2016: Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models. J. Geophys. Res. Atmos., 121, 17151735, doi:10.1002/2015JD024143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, doi:10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polit, D. F., 1996: Data Analysis and Statistics for Nursing Research. Appleton and Lange, 506 pp.

  • Prein, A. F., and Coauthors, 2016: Precipitation in the EURO-CORDEX 0.11 and 0.44 simulations: High resolution, high benefits? Climate Dyn., 46, 383412, doi:10.1007/s00382-015-2589-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribes, A., N. P. Gillett, and F. W. Zwiers, 2015: Designing detection and attribution simulations for CMIP6 to optimize the estimation of greenhouse gas–induced warming. J. Climate, 28, 34353438, doi:10.1175/JCLI-D-14-00691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ring, C., B. Mannig, F. Pollinger, and H. Paeth, 2015: Uncertainties in the assessment of precipitation in selected regions of humid and dry climate. Int. J. Climatol., 36, 35213538, doi:10.1002/joc.4573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and P. D. Jones, 1987: An extension of the Tahiti–Darwin southern oscillation index. Mon. Wea. Rev., 15, 21612165, doi:10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., and R. Knutti, 2012: On the interpretation of constrained climate model ensembles. Geophys. Res. Lett., 39, L16708, doi:10.1029/2012GL052665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and I. M. Held, 2001: Discriminants of twentieth-century changes in Earth surface temperature. J. Climate, 14, 249254, doi:10.1175/1520-0442(2001)014<0249:LDOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, A., and T. DelSole, 2014: Robust forced response in South Asian summer monsoon in a future climate. J. Climate, 27, 78497860, doi:10.1175/JCLI-D-13-00599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, W. J. Ingram, and J. F. B. Mitchell, 2001: Attribution of twentieth century temperature change to natural and anthropogenic causes. Climate Dyn., 17, 121, doi:10.1007/PL00007924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experimental design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, doi:10.1126/science.1058958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, J. I. Kennedy, and P. D. Jones, 2010: An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature, 467, 444447, doi:10.1038/nature09394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., X. Zhang, F. W. Zwiers, and H. Shiogama, 2013: Effect of data coverage on the estimation of mean and variability of precipitation at global and regional scales. J. Geophys. Res. Atmos., 118, 534546, doi:10.1002/jgrd.50118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Elsevier, 627 pp.

  • Yan, X., T. DelSole, and M. K. Tippett, 2016: What surface observations are important for separating the influences of anthropogenic aerosols from other forcings? J. Climate, 29, 41654184, doi:10.1175/JCLI-D-15-0667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461465, doi:10.1038/nature06025.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1130 518 138
PDF Downloads 553 117 29