An “Observational Large Ensemble” to Compare Observed and Modeled Temperature Trend Uncertainty due to Internal Variability

Karen A. McKinnon Advanced Study Program and Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Karen A. McKinnon in
Current site
Google Scholar
PubMed
Close
,
Andrew Poppick Department of Mathematics and Statistics, Carleton College, Northfield, Minnesota

Search for other papers by Andrew Poppick in
Current site
Google Scholar
PubMed
Close
,
Etienne Dunn-Sigouin Department of Earth and Environmental Science, Lamont Doherty Earth Observatory, Columbia University, New York, New York

Search for other papers by Etienne Dunn-Sigouin in
Current site
Google Scholar
PubMed
Close
, and
Clara Deser Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Clara Deser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Estimates of the climate response to anthropogenic forcing contain irreducible uncertainty due to the presence of internal variability. Accurate quantification of this uncertainty is critical for both contextualizing historical trends and determining the spread of climate projections. The contribution of internal variability to uncertainty in trends can be estimated in models as the spread across an initial condition ensemble. However, internal variability simulated by a model may be inconsistent with observations due to model biases. Here, statistical resampling methods are applied to observations in order to quantify uncertainty in historical 50-yr (1966–2015) winter near-surface air temperature trends over North America related to incomplete sampling of internal variability. This estimate is compared with the simulated trend uncertainty in the NCAR CESM1 Large Ensemble (LENS). The comparison suggests that uncertainty in trends due to internal variability is largely overestimated in LENS, which has an average amplification of variability of 32% across North America. The amplification of variability is greatest in the western United States and Alaska. The observationally derived estimate of trend uncertainty is combined with the forced signal from LENS to produce an “Observational Large Ensemble” (OLENS). The members of OLENS indicate the range of observationally constrained, spatially consistent temperature trends that could have been observed over the past 50 years if a different sequence of internal variability had unfolded. The smaller trend uncertainty in OLENS suggests that is easier to detect the historical climate change signal in observations than in any given member of LENS.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0905.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Karen A. McKinnon, karen.mckinnon@post.harvard.edu

Abstract

Estimates of the climate response to anthropogenic forcing contain irreducible uncertainty due to the presence of internal variability. Accurate quantification of this uncertainty is critical for both contextualizing historical trends and determining the spread of climate projections. The contribution of internal variability to uncertainty in trends can be estimated in models as the spread across an initial condition ensemble. However, internal variability simulated by a model may be inconsistent with observations due to model biases. Here, statistical resampling methods are applied to observations in order to quantify uncertainty in historical 50-yr (1966–2015) winter near-surface air temperature trends over North America related to incomplete sampling of internal variability. This estimate is compared with the simulated trend uncertainty in the NCAR CESM1 Large Ensemble (LENS). The comparison suggests that uncertainty in trends due to internal variability is largely overestimated in LENS, which has an average amplification of variability of 32% across North America. The amplification of variability is greatest in the western United States and Alaska. The observationally derived estimate of trend uncertainty is combined with the forced signal from LENS to produce an “Observational Large Ensemble” (OLENS). The members of OLENS indicate the range of observationally constrained, spatially consistent temperature trends that could have been observed over the past 50 years if a different sequence of internal variability had unfolded. The smaller trend uncertainty in OLENS suggests that is easier to detect the historical climate change signal in observations than in any given member of LENS.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0905.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Karen A. McKinnon, karen.mckinnon@post.harvard.edu

Supplementary Materials

    • Supplemental Materials (PDF 13.57 MB)
Save
  • Allen, M., and P. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, Part I: Theory. Climate Dyn., 21, 477491, doi:10.1007/s00382-003-0313-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ault, T. R., J. E. Cole, J. T. Overpeck, G. T. Pederson, S. St. George, B. Otto-Bliesner, C. A. Woodhouse, and C. Deser, 2013: The continuum of hydroclimate variability in western North America during the last millennium. J. Climate, 26, 58635878, doi:10.1175/JCLI-D-11-00732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. T., W. Li, E. C. Cordero, and S. A. Mauget, 2015: Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise. Sci. Rep., 5, 9957, doi:10.1038/srep09957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and M. R. Allen, 2002: Assessing the relative roles of initial and boundary conditions in interannual to decadal climate predictability. J. Climate, 15, 31043109, doi:10.1175/1520-0442(2002)015<3104:ATRROI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., R. E. Chandler, P. M. Cox, J. M. Huthnance, J. Rougier, and D. B. Stephenson, 2012: Quantifying future climate change. Nat. Climate Change, 2, 403409, doi:10.1038/nclimate1414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Dai, A., J. C. Fyfe, S.-P. Xie, and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555559, doi:10.1038/nclimate2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, A. C., and D. V. Hinkley, 1997: Bootstrap Methods and Their Application. Vol. 1. Cambridge University Press, 594 pp.

    • Crossref
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012a: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, doi:10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Terray, and A. S. Phillips, 2016: Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications. J. Climate, 29, 22372258, doi:10.1175/JCLI-D-15-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. W. Hurrell, and A. S. Phillips, 2017a: The role of the North Atlantic Oscillation in European climate projections. Climate Dyn., doi:10.1007/s00382-016-3502-z, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017b: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J. Climate, 30, 50595082, doi:10.1175/JCLI-D-16-0844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 56205628, doi:10.1002/2014GL061146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nat. Climate Change, 3, 10331038, doi:10.1038/nclimate2051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos., 118, 11391150, doi:10.1002/jgrd.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., R. S. Smith, J. M. Gregory, and D. A. Stainforth, 2015: Irreducible uncertainty in near-term climate projections. Climate Dyn., 46, 38073819, doi:10.1007/s00382-015-2806-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, C. R., T. Woollings, E. Hawkins, and H. De Vries, 2016: Robust future changes in temperature variability under greenhouse gas forcing and the relationship with thermal advection. J. Climate, 29, 22212236, doi:10.1175/JCLI-D-14-00735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23, 665668, doi:10.1029/96GL00459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunsch, H. R., 1989: The jackknife and the bootstrap for general stationary observations. Ann. Stat., 17, 12171241, doi:10.1214/aos/1176347265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laepple, T., and P. Huybers, 2014: Ocean surface temperature variability: Large model–data differences at decadal and longer periods. Proc. Natl. Acad. Sci. USA, 111, 16 68216 687, doi:10.1073/pnas.1412077111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Navarra, A., M. Ward, and N. Rayner, 1998: A stochastic model of SST for climate simulation experiments. Climate Dyn., 14, 473487, doi:10.1007/s003820050235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politis, D. N., and J. P. Romano, 1992: A circular block-resampling procedure for stationary data. Exploring the Limits of Bootstrap, R. LePage and L. Billard, Eds., Wiley, 263–270.

  • Prather, M., and Coauthors, 2013: Annex II: Climate system scenario tables. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 1397–1445. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_AnnexII_FINAL.pdf.]

  • Rhines, A., K. A. McKinnon, M. P. Tingley, and P. Huybers, 2016: Seasonally resolved distributional trends of North American temperatures show contraction of winter variability. J. Climate, 30, 11391157, doi:10.1175/JCLI-D-16-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013: Berkeley Earth temperature averaging process. Geoinf. Geostat. Overview, 1 (2), 113, doi:10.4172/2327-4581.1000103.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11, 109120, doi:10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., K. W. Oleson, W. G. Strand, F. Lehner, and B. C. O’Neill, 2017: A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Climatic Change, doi:10.1007/s10584-015-1567-z, in press.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, doi:10.1038/nclimate2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, doi:10.1007/s00382-013-1830-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D., and G. Faluvegi, 2009: Climate response to regional radiative forcing during the twentieth century. Nat. Geosci., 2, 294300, doi:10.1038/ngeo473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shumway, R. H., and D. S. Stoffer, 2015: Time Series Analysis and Its Applications: With R Examples. 3rd ed. Springer, 202 pp.

  • Smoliak, B. V., J. M. Wallace, P. Lin, and Q. Fu, 2015: Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and application to observations. J. Climate, 28, 16131629, doi:10.1175/JCLI-D-14-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., and Coauthors, 2011: Distinguishing the roles of natural and anthropogenically forced decadal climate variability: Implications for prediction. Bull. Amer. Meteor. Soc., 92, 141156, doi:10.1175/2010BAMS2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456–457, 1229, doi:10.1016/j.jhydrol.2012.05.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., E. A. Barnes, C. Deser, W. E. Foust, and A. S. Phillips, 2015: Quantifying the role of internal climate variability in future climate trends. J. Climate, 28, 64436456, doi:10.1175/JCLI-D-14-00830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S.-P. Xie, and Q. Liu, 2016: Comparison of climate response to anthropogenic aerosol versus greenhouse gas forcing: Distinct patterns. J. Climate, 29, 51755188, doi:10.1175/JCLI-D-16-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, S., 2005: Applied Linear Regression. 3rd ed. Wiley Series in Probability and Statistics, Vol. 528, John Wiley & Sons, 336 pp.

    • Crossref
    • Export Citation
  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 6582, doi:10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, doi:10.1175/JAM2404.1.

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

    • Crossref
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant gridpoints”: How research results are routinely overstated and over-interpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, doi:10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and R. L. Wilby, 1999: The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr., 23, 329357, doi:10.1191/030913399666525256.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2761 614 66
PDF Downloads 1931 422 33