Improved Prediction of the Indian Ocean Dipole Mode by Use of Subsurface Ocean Observations

Takeshi Doi Application Laboratory/Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Takeshi Doi in
Current site
Google Scholar
PubMed
Close
,
Andrea Storto Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy

Search for other papers by Andrea Storto in
Current site
Google Scholar
PubMed
Close
,
Swadhin K. Behera Application Laboratory/Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Swadhin K. Behera in
Current site
Google Scholar
PubMed
Close
,
Antonio Navarra Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy

Search for other papers by Antonio Navarra in
Current site
Google Scholar
PubMed
Close
, and
Toshio Yamagata Application Laboratory/Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Toshio Yamagata in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The numerical seasonal prediction system using the Scale Interaction Experiment–Frontier version 1 (SINTEX-F) ocean–atmosphere coupled model has so far demonstrated a good performance for prediction of the Indian Ocean dipole mode (IOD) despite the fact that the system adopts a relatively simple initialization scheme based on nudging only the sea surface temperature (SST). However, it is to be expected that the system is not sufficient to capture in detail the subsurface oceanic precondition. Therefore, the authors have introduced a new three-dimensional variational ocean data assimilation (3DVAR) method that takes three-dimensional observed ocean temperature and salinity into account. Since the new system has successfully improved IOD predictions, the present study is showing that the ocean observational efforts in the tropical Indian Ocean are decisive for improvement of the IOD predictions and may have a large impact on important socioeconomic activities, particularly in the Indian Ocean rim countries.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0915.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takeshi Doi, takeshi.doi@jamstec.go.jp

Abstract

The numerical seasonal prediction system using the Scale Interaction Experiment–Frontier version 1 (SINTEX-F) ocean–atmosphere coupled model has so far demonstrated a good performance for prediction of the Indian Ocean dipole mode (IOD) despite the fact that the system adopts a relatively simple initialization scheme based on nudging only the sea surface temperature (SST). However, it is to be expected that the system is not sufficient to capture in detail the subsurface oceanic precondition. Therefore, the authors have introduced a new three-dimensional variational ocean data assimilation (3DVAR) method that takes three-dimensional observed ocean temperature and salinity into account. Since the new system has successfully improved IOD predictions, the present study is showing that the ocean observational efforts in the tropical Indian Ocean are decisive for improvement of the IOD predictions and may have a large impact on important socioeconomic activities, particularly in the Indian Ocean rim countries.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0915.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takeshi Doi, takeshi.doi@jamstec.go.jp

Supplementary Materials

    • Supplemental Materials (PDF 27.09 MB)
Save
  • Abram, N. J., M. K. Gagan, M. T. McCulloch, J. Chappell, and W. S. Hantoro, 2003: Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science, 301, 952955, doi:10.1126/science.1083841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the decadal relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 44994502, doi:10.1029/2001GL013294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, doi:10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701, doi:10.1029/2008GL035561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, H. M. van den Dool, and D. A. Unger, 2015: Toward an improved multimodel ENSO prediction. J. Appl. Meteor. Climatol., 54, 15791595, doi:10.1175/JAMC-D-14-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Southern Oscillation. J. Meteor. Soc. Japan, 81, 169177, doi:10.2151/jmsj.81.169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 45144530, doi:10.1175/JCLI3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705, doi:10.1175/JCLI3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, and T. Yamagata, 2008: Unusual IOD event of 2007. Geophys. Res. Lett., 35, L14S11, doi:10.1029/2008GL034122.

  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021, doi:10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82, doi:10.1016/S0065-2687(08)60005-9.

    • Crossref
    • Export Citation
  • Cai, W., and T. Cowan, 2013: Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 12001205, doi:10.1002/grl.50208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., H. Hendon, and G. Meyers, 2005: Indian Ocean dipole-like variability in the CSIRO Mark 3 coupled climate model. J. Climate, 18, 14491468, doi:10.1175/JCLI3332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, and M. Raupach, 2009: Positive Indian Ocean dipole events precondition southeast Australia bushfires. Geophys. Res. Lett., 36, L19710, doi:10.1029/2009GL039902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., S. K. Behera, and T. Yamagata, 2008: Indian Ocean Dipole influence on South American rainfall. Geophys. Res. Lett., 35, L14S12, doi:10.1029/2008GL034204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., S. K. Behera, and T. Yamagata, 2016: Improved seasonal prediction using the SINTEX-F2 coupled model. J. Adv. Model. Earth Syst., 8, 18471867, doi:10.1002/2016MS000744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, doi:10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, R., W. Duan, and M. Mu, 2017: Estimating observing locations for advancing beyond the winter predictability barrier of Indian Ocean dipole event predictions. Climate Dyn., 48, 11731185, doi:10.1007/s00382-016-3134-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646, doi:10.1029/97JC00480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujii, Y., and Coauthors, 2015: Evaluation of the Tropical Pacific Observing System from the ocean data assimilation perspective. Quart. J. Roy. Meteor. Soc., 141, 24812496, doi:10.1002/qj.2579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, doi:10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and F. Reseghetti, 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812833, doi:10.1016/j.dsr.2010.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003a: Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann. Geophys., 46, 126, doi:10.4401/ag-3385.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003b: The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn., 20, 567582, doi:10.1007/s00382-002-0295-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, doi:10.1029/2002GL016831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM. J. Climate, 16, 11411158, doi:10.1175/1520-0442(2003)16<1141:MFEPCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashizume, H., L. F. Chaves, and N. Minakawa, 2012: Indian Ocean dipole drives malaria resurgence in East African highlands. Sci. Rep., 2, 269, doi:10.1038/srep00269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and G. Wang, 2010: Seasonal prediction of the Leeuwin Current using the POAMA dynamical seasonal forecast model. Climate Dyn., 34, 11291137, doi:10.1007/s00382-009-0570-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horii, T., H. Hase, I. Ueki, and Y. Masumoto, 2008: Oceanic precondition and evolution of the 2006 Indian Ocean dipole. Geophys. Res. Lett., 35, L03607, doi:10.1029/2007GL032464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759, doi:10.5918/jamstecr.8.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iizuka, S., T. Matsuura, and T. Yamagata, 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys. Res. Lett., 27, 33693372, doi:10.1029/2000GL011484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on following year’s El Niño. Nat. Geosci., 3, 168172, doi:10.1038/ngeo760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, doi:10.1175/JCLI-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, doi:10.1007/s00382-008-0397-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, S., A. K. Sahai, B. N. Goswami, P. Terray, S. Masson, and J.-J. Luo, 2012: Possible role of warm SST bias in the simulation of boreal summer monsoon in SINTEX-F2 coupled model. Climate Dyn., 38, 15611576, doi:10.1007/s00382-011-1264-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, M. Botzet, J. Jungclaus, and U. Schulzweida, 2005: A coupled method for initializing El Niño–Southern Oscillation forecasts using sea surface temperature. Tellus, 57A, 340356, doi:10.1111/j.1600-0870.2005.00107.x.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, doi:10.1038/nature06921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and D. Min, 2009: Multi-model ensemble ENSO prediction with CCSM and CFS. Mon. Wea. Rev., 137, 29082930, doi:10.1175/2009MWR2672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., and T. Tozuka, 2016: Seasonal variability of the relationship between SST and OLR in the Indian Ocean and its implications for initialization in a CGCM with SST-nudging. J. Oceanogr., 72, 327337, doi:10.1007/s10872-015-0329-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, and W. Wang, 2013: Understanding prediction skill of seasonal mean precipitation over the tropics. J. Climate, 26, 56745681, doi:10.1175/JCLI-D-12-00731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., H. Wang, Y. Xue, and W. Wang, 2014: How much of monthly subsurface temperature variability in the equatorial Pacific can be recovered by the specification of sea surface temperatures? J. Climate, 27, 15591577, doi:10.1175/JCLI-D-13-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and Coauthors, 2017: Predictability of the Indian Ocean dipole in the coupled models. Climate Dyn., 48, 20052024, doi:10.1007/s00382-016-3187-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005a: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 44744497, doi:10.1175/JCLI3526.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005b: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 23442360, doi:10.1175/JCLI3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190, doi:10.1175/JCLI4132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, 2008a: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02, doi:10.1029/2007GL032793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2008b: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 8493, doi:10.1175/2007JCLI1412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, doi:10.1175/2009JCLI3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine, version 3.0. Note du Pôle de modélisation de l’Institut Pierre-Simon Laplace 27, Institut Pierre-Simon Laplace, 209 pp.

  • Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA 8.1 ocean general circulation model reference manual. LODYC/ IPSL Tech. Rep. Note 11, 91 pp.

  • Masson, S., P. Terray, G. Madec, J. J. Luo, T. Yamagata, and K. Takahashi, 2012: Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Climate Dyn., 39, 681707, doi:10.1007/s00382-011-1247-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950954, doi:10.1126/science.283.5404.950.

  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85, 677695, doi:10.1175/BAMS-85-5-677.

  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean–Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, doi:10.1029/97JC02906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, doi:10.1175/2008BAMS2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morioka, Y., V. J. Ratnam, W. Sasaki, and Y. Masumoto, 2013: Generation mechanism of the South Pacific subtropical dipole. J. Climate, 26, 60336045, doi:10.1175/JCLI-D-12-00648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morioka, Y., S. Masson, P. Terray, C. Prodhomme, S. K. Behera, and Y. Masumoto, 2014: Role of tropical SST variability on the formation of subtropical dipoles. J. Climate, 27, 44864507, doi:10.1175/JCLI-D-13-00506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morioka, Y., K. Takaya, S. K. Behera, and Y. Masumoto, 2015: Local SST impacts on the summertime Mascarene high variability. J. Climate, 28, 678694, doi:10.1175/JCLI-D-14-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, D. P., P. Laloyaux, K. Haines, and M. Balmaseda, 2015: Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Mon. Wea. Rev., 143, 46314644, doi:10.1175/MWR-D-15-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., H. Pohlmann, F. Sienz, and D. Smith, 2014: Decadal climate predictions for the period 1901–2010 with a coupled climate model. Geophys. Res. Lett., 41, 21002107, doi:10.1002/2014GL059259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., W. Sasaki, T. Tozuka, J.-J. Luo, S. K. Behera, and T. Yamagata, 2013: Longitudinal biases in the Seychelles Dome simulated by 35 ocean–atmosphere coupled general circulation models. J. Geophys. Res., 118, 831846, doi:10.1029/2012JC008352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., H. Kayanne, H. Iijima, T. R. McClanahan, S. Behera, and T. Yamagata, 2009: Mode shift in the Indian Ocean climate under global warming stress. Geophys. Res. Lett., 36, L23708, doi:10.1029/2009GL040590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navarra, A., and Coauthors, 2008: Atmospheric horizontal resolution affects tropical climate variability in coupled models. J. Climate, 21, 730750, doi:10.1175/2007JCLI1406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, doi:10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., P. Terray, S. Masson, T. Izumo, T. Tozuka, and T. Yamagata, 2014: Impacts of Indian Ocean SST biases on the Indian monsoon: As simulated in a global coupled model. Climate Dyn., 42, 271290, doi:10.1007/s00382-013-1671-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., P. Terray, S. Masson, G. Boschat, and T. Izumo, 2015: Oceanic factors controlling the Indian summer monsoon onset in a coupled model. Climate Dyn., 44, 9771002, doi:10.1007/s00382-014-2200-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and T. Yamagata, 2004: Abrupt termination of Indian Ocean dipole events in response to intra-seasonal oscillations. Geophys. Res. Lett., 31, L19306, doi:10.1029/2004GL020842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., J.-J. Luo, S. K. Behera, and T. Yamagata, 2009: Generation and termination of Indian Ocean dipole events in 2003, 2006 and 2007. Climate Dyn., 33, 751767, doi:10.1007/s00382-008-0498-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, doi:10.1002/qj.49712253408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Rep. 218, 90 pp.

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. MPI-Rep. 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 140 pp. [Available online at https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf.]

  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151169, doi:10.3354/cr025151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

  • Sasaki, W., K. J. Richards, and J.-J. Luo, 2012: Role of vertical mixing originating from small vertical scale structures above and within the equatorial thermocline in an OGCM. Ocean Modell., 57-58, 2942, doi:10.1016/j.ocemod.2012.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, W., K. J. Richards, and J.-J. Luo, 2013a: Impact of vertical mixing induced by small vertical scale structures above and within the equatorial thermocline on the tropical Pacific in a CGCM. Climate Dyn., 41, 443453, doi:10.1007/s00382-012-1593-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, W., J.-J. Luo, and S. Masson, 2013b: Tropical cyclone simulation in a high-resolution atmosphere–ocean coupled general circulation model. Cyclones: Formation, Triggers and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 197–220.

  • Sasaki, W., T. Doi, K. J. Richards, and Y. Masumoto, 2014: Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Climate Dyn., 43, 25392552, doi:10.1007/s00382-014-2072-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, W., T. Doi, K. J. Richards, and Y. Masumoto, 2015: The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM. Climate Dyn., 44, 191202, doi:10.1007/s00382-014-2133-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, L., H. H. Hendon, O. Alves, J.-J. Luo, M. Balmaseda, and D. Anderson, 2012: How predictable is the Indian Ocean dipole? Mon. Wea. Rev., 140, 38673884, doi:10.1175/MWR-D-12-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Q., G. A. Vecchi, and A. J. Rosati, 2008: Predictability of the Indian Ocean sea surface temperature anomalies in the GFDL coupled model. Geophys. Res. Lett., 35, L02701, doi:10.1029/2007GL031966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., S. Dobricic, S. Masina, and P. Di Pietro, 2011: Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system. Mon. Wea. Rev., 139, 738754, doi:10.1175/2010MWR3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., S. Masina, and S. Dobricic, 2014: Estimation and impact of nonuniform horizontal correlation length scales for global ocean physical analyses. J. Atmos. Oceanic Technol., 31, 23302349, doi:10.1175/JTECH-D-14-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, A., Y. Morioka, and S. K. Behera, 2014: Role of climate variability in the heatstroke death rates of Kanto region in Japan. Sci. Rep., 4, 5655, doi:10.1038/srep05655.

    • Search Google Scholar
    • Export Citation
  • Tanizaki, C., T. Tozuka, T. Doi, and T. Yamagata, 2017: Relative importance of the processes contributing to the development of SST anomalies in the eastern pole of the Indian Ocean Dipole and its implication for predictability. Climate Dyn., 49, 12891304, doi:10.1007/s00382-016-3382-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, P., K. Kamala, S. Masson, G. Madec, A. K. Sahai, J.-J. Luo, and T. Yamagata, 2012: The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO–IOD relationships in a global coupled model. Climate Dyn., 39, 729754, doi:10.1007/s00382-011-1240-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Yokoi, and T. Yamagata, 2010: A modeling study of interannual variations of the Seychelles Dome. J. Geophys. Res., 115, C04005, doi:10.1029/2009JC005547.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. CERFACS Tech. Rep. TR/CGMC/00-10, 85 pp.

  • Valcke, S., A. Caubel, R. Vogelsang, and D. Declat, 2004: OASIS3 Ocean Atmosphere Sea Ice Soil user’s guide. CERFACS Tech. Rep. TR/CMGC/04/68, 70 pp.

  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting to regional tropical cyclone activity. J. Climate, 27, 79948016, doi:10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2005: Potential predictability of tropical Indian Ocean SST anomalies. Geophys. Res. Lett., 32, L24702, doi:10.1029/2005GL024169.

  • Wajsowicz, R. C., 2007: Seasonal-to-interannual forecasting of tropical Indian Ocean sea surface temperature anomalies: Potential predictability and barriers. J. Climate, 20, 33203343, doi:10.1175/JCLI4162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. Moore, J. Loschnigg, and M. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. Behera, J.-J. Luo, S. Masson, M. Jury, and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189–212.

    • Crossref
    • Export Citation
  • Yamagata, T., Y. Morioka, and S. K. Behera, 2016: Old and new faces of climate variations. Indo-Pacific Climate Variability and Predictability, S. K. Behera and T. Yamagata, Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 7, World Scientific, 1–23.

    • Crossref
    • Export Citation
  • Yang, Y., S.-P. Xie, L. Wu, Y. Kosaka, N.-C. Lau, and G. A. Vecchi, 2015: Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J. Climate, 28, 80218036, doi:10.1175/JCLI-D-15-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, T., T. Tozuka, and T. Yamagata, 2008: Seasonal variation of the Seychelles Dome. J. Climate, 21, 37403754, doi:10.1175/2008JCLI1957.1.

  • Yokoi, T., T. Tozuka, and T. Yamagata, 2012: Seasonal and interannual variations of the SST above the Seychelles Dome. J. Climate, 25, 800814, doi:10.1175/JCLI-D-10-05001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., and T. Yamagata, 2015: Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades. Sci. Rep., 5, 17252, doi:10.1038/srep17252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., T. Tozuka, T. Miyasaka, and T. Yamagata, 2009: Respective influences of IOD and ENSO on the Tibetan snow cover in early winter. Climate Dyn., 33, 509520, doi:10.1007/s00382-008-0495-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., and Coauthors, 2011: Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian Throughflow. J. Climate, 24, 35933608, doi:10.1175/2011JCLI3649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and H. H. Hendon, 2009: Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Quart. J. Roy. Meteor. Soc., 135, 337352, doi:10.1002/qj.370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, A. Kumar, and J. L. Kinter III, 2015a: Seasonality in prediction skill and predictable pattern of tropical Indian Ocean SST. J. Climate, 28, 79627984, doi:10.1175/JCLI-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., and Coauthors, 2015b: ENSO prediction in Project Minerva: Sensitivity to atmospheric horizontal resolution and ensemble size. J. Climate, 28, 20802095, doi:10.1175/JCLI-D-14-00302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., A. Kumar, H. Wang, and B. Huang, 2015c: Sea surface temperature predictions in NCEP CFSv2 using a simple ocean initialization scheme. Mon. Wea. Rev., 143, 31763191, doi:10.1175/MWR-D-14-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., A. Kumar, H.-C. Lee, and H. Wang, 2017: Seasonal predictions using a simple ocean initialization scheme. Climate Dyn., doi:10.1007/s00382-017-3556-6, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2046 794 144
PDF Downloads 1013 187 8