Classifications of Winter Euro-Atlantic Circulation Patterns: An Intercomparison of Five Atmospheric Reanalyses

Jan Stryhal Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic

Search for other papers by Jan Stryhal in
Current site
Google Scholar
PubMed
Close
and
Radan Huth Department of Physical Geography and Geoecology, Faculty of Science, Charles University, and Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Search for other papers by Radan Huth in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Atmospheric reanalyses have been widely used to study large-scale atmospheric circulation and its links to local weather and to validate climate models. Only little effort has so far been made to compare reanalyses over the Euro-Atlantic domain, with the exception of a few studies analyzing North Atlantic cyclones. In particular, studies utilizing automated classifications of circulation patterns—one of the most popular methods in synoptic climatology—have paid little or no attention to the issue of reanalysis evaluation. Here, five reanalyses [ERA-40; NCEP-1; JRA-55; Twentieth Century Reanalysis, version 2 (20CRv2); and ECMWF twentieth-century reanalysis (ERA-20C)] are compared as to the frequency of occurrence of circulation types (CTs) over eight European domains in winters 1961–2000. Eight different classifications are used in parallel with the intention to eliminate possible artifacts of individual classification methods. This also helps document how substantial effect a choice of method can have if one quantifies differences between reanalyses. In general, ERA-40, NCEP-1, and JRA-55 exhibit a fairly small portion of days (under 8%) classified to different CTs if pairs of reanalyses are compared, with two exceptions: over Iceland, NCEP-1 shows disproportionately high frequencies of CTs with cyclones shifted south- and eastward; over the eastern Mediterranean region, ERA-40 and NCEP-1 disagree on classification of about 22% of days. The 20CRv2 is significantly different from other reanalyses over all domains and has a clearly suppressed frequency of zonal CTs. Finally, validation of 32 CMIP5 models over the eastern Mediterranean region reveals that using different reanalyses can considerably alter errors in the CT frequency of models and their rank.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jan Stryhal, jan.stryhal@natur.cuni.cz

Abstract

Atmospheric reanalyses have been widely used to study large-scale atmospheric circulation and its links to local weather and to validate climate models. Only little effort has so far been made to compare reanalyses over the Euro-Atlantic domain, with the exception of a few studies analyzing North Atlantic cyclones. In particular, studies utilizing automated classifications of circulation patterns—one of the most popular methods in synoptic climatology—have paid little or no attention to the issue of reanalysis evaluation. Here, five reanalyses [ERA-40; NCEP-1; JRA-55; Twentieth Century Reanalysis, version 2 (20CRv2); and ECMWF twentieth-century reanalysis (ERA-20C)] are compared as to the frequency of occurrence of circulation types (CTs) over eight European domains in winters 1961–2000. Eight different classifications are used in parallel with the intention to eliminate possible artifacts of individual classification methods. This also helps document how substantial effect a choice of method can have if one quantifies differences between reanalyses. In general, ERA-40, NCEP-1, and JRA-55 exhibit a fairly small portion of days (under 8%) classified to different CTs if pairs of reanalyses are compared, with two exceptions: over Iceland, NCEP-1 shows disproportionately high frequencies of CTs with cyclones shifted south- and eastward; over the eastern Mediterranean region, ERA-40 and NCEP-1 disagree on classification of about 22% of days. The 20CRv2 is significantly different from other reanalyses over all domains and has a clearly suppressed frequency of zonal CTs. Finally, validation of 32 CMIP5 models over the eastern Mediterranean region reveals that using different reanalyses can considerably alter errors in the CT frequency of models and their rank.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jan Stryhal, jan.stryhal@natur.cuni.cz
Save
  • Beck, C., J. Jacobeit, and P. D. Jones, 2007: Frequency and within-type variations of large-scale circulation types and their effects on low-frequency climate variability in central Europe since 1780. Int. J. Climatol., 27, 473491, doi:10.1002/joc.1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belleflamme, A., X. Fettweis, C. Lang, and M. Erpicum, 2013: Current and future atmospheric circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models. Climate Dyn., 41, 20612080, doi:10.1007/s00382-012-1538-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beranová, R., and R. Huth, 2008: Time variations of the effects of circulation variability modes on European temperature and precipitation in winter. Int. J. Climatol., 28, 139158, doi:10.1002/joc.1516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and G. J. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, doi:10.1175/JCLI-D-11-00685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brands, S., J. M. Gutiérrez, S. Herrera, and A. S. Cofiño, 2012: On the use of reanalysis data for downscaling. J. Climate, 25, 25172526, doi:10.1175/JCLI-D-11-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broderick, C., and R. Fealy, 2015: An analysis of the synoptic and climatological applicability of circulation type classifications for Ireland. Int. J. Climatol., 35, 481505, doi:10.1002/joc.3996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17, 46034619, doi:10.1175/3241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahynová, M., and R. Huth, 2016: Atmospheric circulation influence on climatic trends in Europe: An analysis of circulation type classifications from the COST733 catalogue. Int. J. Climatol., 36, 27432760, doi:10.1002/joc.4003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casado, M. J., M. A. Pastor, and F. J. Doblas-Reyes, 2010: Links between circulation types and precipitation in Spain. Phys. Chem. Earth, 35, 437447, doi:10.1016/j.pce.2009.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., P. Uotila, and A. Lynch, 2006: Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 1: Arctic. Int. J. Climatol., 26, 10271049, doi:10.1002/joc.1306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compagnucci, R. H., and M. B. Richman, 2008: Can principal component analysis provide atmospheric circulation or teleconnection patterns? Int. J. Climatol., 28, 703726, doi:10.1002/joc.1574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Dell’Aquila, A., and Coauthors, 2016: Benchmarking Northern Hemisphere midlatitude atmospheric synoptic variability in centennial reanalysis and numerical simulations. Geophys. Res. Lett., 43, 54425449, doi:10.1002/2016GL068829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enke, W., and A. Spekat, 1997: Downscaling climate model outputs into local and regional weather elements by classification and regression. Climate Res., 8, 195207, doi:10.3354/cr008195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnis, J., J. Cassano, M. Holland, and P. Uotila, 2009a: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models; Part 1: The Mackenzie River Basin. Int. J. Climatol., 29, 12261243, doi:10.1002/joc.1753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnis, J., J. Cassano, M. Holland, and P. Uotila, 2009b: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models; Part 2: Eurasian watersheds. Int. J. Climatol., 29, 12441261, doi:10.1002/joc.1769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., P. Uotila, S. E. Perkins-Kirkpatrick, L. V. Alexander, and A. J. Pitman, 2016: Evaluating synoptic systems in the CMIP5 climate models over the Australian region. Climate Dyn., 47, 22352251, doi:10.1007/s00382-015-2961-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and P.-P. Rong, 2006: Discrepancies between different Northern Hemisphere summer atmospheric data products. J. Climate, 19, 12611273, doi:10.1175/JCLI3643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, C. E., J. P. Palutikof, and T. D. Davies, 2004: Objective cyclone climatologies of the North Atlantic—A comparison between the ECMWF and NCEP reanalyses. Climate Dyn., 22, 757769, doi:10.1007/s00382-004-0415-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertig, E., C. Beck, H. Wanner, and J. Jacobeit, 2015: A review of non-stationarities in climate variability of the last century with focus on the North Atlantic–European sector. Earth-Sci. Rev., 147, 117, doi:10.1016/j.earscirev.2015.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huth, R., 1993: An example of using obliquely rotated principal components to detect circulation types over Europe. Meteor. Z., 2, 285293.

  • Huth, R., C. Beck, A. Philipp, M. Demuzere, Z. Ustrnul, M. Cahynová, J. Kyselý, and O. E. Tveito, 2008: Classifications of atmospheric circulation patterns. Ann. N. Y. Acad. Sci., 1146, 105152, doi:10.1196/annals.1446.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huth, R., C. Beck, and O. E. Tveito, 2010: Classifications of atmospheric circulation patterns—Theory and applications—Preface. Phys. Chem. Earth, 35, 307308, doi:10.1016/j.pce.2010.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., M. Hulme, and K. R. Briffa, 1993: A comparison of Lamb circulation types with an objective classification scheme. Int. J. Climatol., 13, 655663, doi:10.1002/joc.3370130606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, L., and P. J. Rousseeuw, 1990: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley, 368 pp.

    • Crossref
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kouroutzoglou, J., H. Flocas, I. Simmonds, K. Keay, and M. Hatzaki, 2011: Assessing characteristics of Mediterranean explosive cyclones for different data resolution. Theor. Appl. Climatol., 105, 263275, doi:10.1007/s00704-010-0390-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kučerová, M., C. Beck, A. Philipp, and R. Huth, 2016: Trends in frequency and persistence of atmospheric circulation types over Europe derived from a multitude of classifications. Int. J. Climatol., 37, 25022521, doi:10.1002/joc.4861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., L. Zhang, and W. Wang, 2013: Sea surface temperature–precipitation relationship in different reanalyses. Mon. Wea. Rev., 141, 11181123, doi:10.1175/MWR-D-12-00214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Küttel, M., J. Luterbacher, and H. Wanner, 2011: Multidecadal changes in winter circulation-climate relationship in Europe: Frequency variations, within-type modifications, and long-term trends. Climate Dyn., 36, 957972, doi:10.1007/s00382-009-0737-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, I. A., 1963: Map-pattern classification by statistical methods. J. Appl. Meteor., 2, 5665, doi:10.1175/1520-0450(1963)002<0056:MPCBSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, A., P. Uotila, and J. J. Cassano, 2006: Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 2: Antarctic. Int. J. Climatol., 26, 11811199, doi:10.1002/joc.1305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzanas, R., S. Brands, D. San-Martín, A. Lucero, C. Limbo, and J. M. Gutiérrez, 2015: Statistical downscaling in the tropics can be sensitive to reanalysis choice: A case study for precipitation in the Philippines. J. Climate, 28, 41714184, doi:10.1175/JCLI-D-14-00331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKendry, I. G., K. Stahl, and R. D. Moore, 2006: Synoptic sea-level pressure patterns generated by a general circulation model: Comparison with types derived from NCEP/NCAR re-analysis and implications for downscaling. Int. J. Climatol., 26, 17271736, doi:10.1002/joc.1337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nygård, T., and Coauthors, 2016: Validation of eight atmospheric reanalyses in the Antarctic Peninsula region. Quart. J. Roy. Meteor. Soc., 142, 684692, doi:10.1002/qj.2691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasini, A., and R. Langone, 2012: Influence of circulation patterns on temperature behavior at the regional scale: A case study investigated via neural network modeling. J. Climate, 25, 21232128, doi:10.1175/JCLI-D-11-00551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pastor, M. A., and M. J. Casado, 2012: Use of circulation types classifications to evaluate AR4 climate models over the Euro-Atlantic region. Climate Dyn., 39, 20592077, doi:10.1007/s00382-012-1449-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, J., M. Menendez, F. J. Mendez, and I. J. Losada, 2014: Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region. Climate Dyn., 43, 26632680, doi:10.1007/s00382-014-2078-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philipp, A., P. M. Della-Marta, J. Jacobeit, D. R. Fereday, P. D. Jones, A. Moberg, and H. Wanner, 2007: Long-term variability of daily North Atlantic–European pressure patterns since 1850 classified by simulated annealing clustering. J. Climate, 20, 40654095, doi:10.1175/JCLI4175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philipp, A., C. Beck, R. Huth, and J. Jacobeit, 2016: Development and comparison of circulation type classifications using the COST 733 dataset and software. Int. J. Climatol., 36, 26732691, doi:10.1002/joc.3920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plavcová, E., and J. Kyselý, 2012: Atmospheric circulation in regional climate models over Central Europe: Links to surface air temperature and the influence of driving data. Climate Dyn., 39, 16811695, doi:10.1007/s00382-011-1278-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plavcová, E., and J. Kyselý, 2013: Projected evolution of circulation types and their temperatures over Central Europe in climate models. Theor. Appl. Climatol., 114, 625634, doi:10.1007/s00704-013-0874-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, doi:10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, doi:10.1002/joc.3370060305.

  • Rust, H., M. Vrac, M. Lengaigne, and B. Sultan, 2010: Quantifying differences in circulation patterns based on probabilistic models: IPCC AR4 multimodel comparison for the North Atlantic. J. Climate, 23, 65736589, doi:10.1175/2010JCLI3432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stickler, A., and S. Brönnimann, 2011: Significant bias of the NCEP/NCAR and twentieth-century reanalyses relative to pilot balloon observations over the West African monsoon region (1940–1957). Quart. J. Roy. Meteor. Soc., 137, 14001416, doi:10.1002/qj.854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dyn., 26, 127143, doi:10.1007/s00382-005-0065-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tveito, O. E., and R. Huth, 2016: Circulation-type classifications in Europe: Results of the COST 733 Action. Int. J. Climatol., 36, 26712672, doi:10.1002/joc.4768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., G. C. Leckebusch, and J. G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117131, doi:10.1007/s00704-008-0083-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, X. L., V. R. Swail, and F. W. Zwiers, 2006: Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP–NCAR reanalysis for 1958–2001. J. Climate, 19, 31453166, doi:10.1175/JCLI3781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, R. Chan, and V. Issac, 2016: Inter-comparison of extra-tropical cyclone activity in nine reanalysis datasets. Atmos. Res., 181, 133153, doi:10.1016/j.atmosres.2016.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 648 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 649 287 103
PDF Downloads 271 35 6