Diverse Characteristics of U.S. Summer Heat Waves

Bradfield Lyon Climate Change Institute and School of Earth and Climate Sciences, University of Maine, Orono, Maine

Search for other papers by Bradfield Lyon in
Current site
Google Scholar
PubMed
Close
and
Anthony G. Barnston International Research Institute for Climate and Society, The Earth Institute, Columbia University, Palisades, New York

Search for other papers by Anthony G. Barnston in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Heat waves are climate extremes having significant environmental and social impacts. However, there is no universally accepted definition of a heat wave. The major goal of this study is to compare characteristics of continental U.S. warm season (May–September) heat waves defined using four different variables—temperature itself and three variables incorporating atmospheric moisture—all for differing intensity and duration requirements. To normalize across different locations and climates, daily intensity is defined using percentiles computed over the 1979–2013 period. The primary data source is the U.S. Historical Climatological Network (USHCN), with humidity data from the North American Regional Reanalysis (NARR) also tested and utilized. The results indicate that heat waves defined using daily maximum temperatures are more frequent and persistent than when based on minimum temperatures, with substantial regional variations in behavior. For all four temperature variables, heat waves based on daily minimum values have greater spatial coherency than for daily maximum values. Regionally, statistically significant upward trends (1979–2013) in heat wave frequency are identified, largest when based on daily minimum values, across variables. Other notable differences in behavior include a higher frequency of heat waves based on maximum temperature itself than for variables that include humidity, while daily minimum temperatures show greater similarity across all variables in this regard. Overall, the study provides a baseline to compare with results from climate model simulations and projections, for examining differing regional and large-scale circulation patterns associated with U.S. summer heat waves and for examining the role of land surface conditions in modulating regional variations in heat wave behavior.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bradfield Lyon, bradfield.lyon@maine.edu

Abstract

Heat waves are climate extremes having significant environmental and social impacts. However, there is no universally accepted definition of a heat wave. The major goal of this study is to compare characteristics of continental U.S. warm season (May–September) heat waves defined using four different variables—temperature itself and three variables incorporating atmospheric moisture—all for differing intensity and duration requirements. To normalize across different locations and climates, daily intensity is defined using percentiles computed over the 1979–2013 period. The primary data source is the U.S. Historical Climatological Network (USHCN), with humidity data from the North American Regional Reanalysis (NARR) also tested and utilized. The results indicate that heat waves defined using daily maximum temperatures are more frequent and persistent than when based on minimum temperatures, with substantial regional variations in behavior. For all four temperature variables, heat waves based on daily minimum values have greater spatial coherency than for daily maximum values. Regionally, statistically significant upward trends (1979–2013) in heat wave frequency are identified, largest when based on daily minimum values, across variables. Other notable differences in behavior include a higher frequency of heat waves based on maximum temperature itself than for variables that include humidity, while daily minimum temperatures show greater similarity across all variables in this regard. Overall, the study provides a baseline to compare with results from climate model simulations and projections, for examining differing regional and large-scale circulation patterns associated with U.S. summer heat waves and for examining the role of land surface conditions in modulating regional variations in heat wave behavior.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bradfield Lyon, bradfield.lyon@maine.edu
Save
  • Anderson, G. B., and M. L. Bell, 2011: Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect., 119, 210218, doi:10.1289/ehp.1002313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, A. G., S. Tong, and A. C. A. Clements, 2010: What measure of temperature is the best predictor of mortality? Environ. Res., 110, 604611, doi:10.1016/j.envres.2010.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. J., and A. T. DeGaetano, 2013: Trends in U.S. surface humidity, 1931–2010. J. Appl. Meteor., 52, 147163, doi:10.1175/JAMC-D-12-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., J. M. Wallace, and D. P. Lettenmaier, 2000: Dependence of extreme daily maximum temperatures on antecedent soil moisture in the contiguous United States during summer. J. Climate, 13, 26412651, doi:10.1175/1520-0442(2000)013<2641:DOEDMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fall, S., N. S. Diffenbaugh, D. Niyogi, R. A. Pielke Sr., and G. Rochon, 2010: Temperature and equivalent temperature over the United States (1979–2005). Int. J. Climatol., 30, 20452054, doi:10.1002/joc.2094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., and R. J. Ross, 1998: Increased summertime heat stress in the US. Nature, 396, 529530, doi:10.1038/25030.

  • Gaffen, D. J., and R. J. Ross, 1999: Climatology and trends of U.S. surface humidity and temperature. J. Climate, 12, 811828, doi:10.1175/1520-0442(1999)012<0811:CATOUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., and K. M. Valimont, 1986: An evaluation of summer discomfort in the United States using a relative climatological index. Bull. Amer. Meteor. Soc., 67, 842848, doi:10.1175/1520-0477(1986)067<0842:AEOSDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., and R. E. Davis, 1989: Weather and human mortality: An evaluation of demographic and interregional responses in the United States. Ann. Assoc. Amer. Geogr., 79, 4464, doi:10.1111/j.1467-8306.1989.tb00249.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., G. Kukla, and J. Gavin, 1984: Decreasing diurnal temperature range in the United States and Canada from 1941 through 1980. J. Climate Appl. Meteor., 23, 14891504, doi:10.1175/1520-0450(1984)023<1489:DDTRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Coauthors, 1993: A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature. Bull. Amer. Meteor. Soc., 74, 10071023, doi:10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., S. A. Changnon, B. C. Reinke, and R. W. Arritt, 1996: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors. Bull. Amer. Meteor. Soc., 77, 15071518, doi:10.1175/1520-0477(1996)077<1507:TJHWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., R. A. Pielke Jr., and S. A. Changnon, 1999: Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review. Bull. Amer. Meteor. Soc., 80, 10771098, doi:10.1175/1520-0477(1999)080<1077:TFIWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., 2009: Southern Africa summer drought and heat waves: Observations and coupled model behavior. J. Climate, 22, 60336046, doi:10.1175/2009JCLI3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, G., 2015: Heatwaves and health: Guidance on warning-system development. World Health Organization, WMO-No. 1142, 114 pp. [Available online at http://www.who.int/globalchange/publications/heatwaves-health-guidance/en/.]

  • Melillo, J. M., T. C. Richmond, and G. W. Yohe, Eds., 2014: Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 841 pp, doi:10.7930/J0Z31WJ2.

    • Crossref
    • Export Citation
  • Menne, M. J., C. N. Williams, and R. S. Vose, 2009: The U.S. Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 9931007, doi:10.1175/2008BAMS2613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., C. N. Williams Jr., and R. S. Vose, 2015. United States Historical Climatology Network Daily Temperature, Precipitation, and Snow Data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, accessed 2 February 2015. [Available online at http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html.]

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • NCDC, 2011: U.S. heat stress index. Daily maximum and minimum apparent temperature for 187 stations, National Climatic Data Center, accessed 5 February 2015. [Available online at https://www.ncdc.noaa.gov/societal-impacts/heat-stress/data.]

  • Peterson, T. C., X. Zhang, M. Brunet-India, and J. L. Vázquez-Aguirre, 2008: Changes in North American extremes derived from daily weather data. J. Geophys. Res., 113, D07113, doi:10.1029/2007JD009453.

    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 2000: Temporal trends in United States dew point temperatures. Int. J. Climatol., 20, 9851002, doi:10.1002/1097-0088(200007)20:9<985::AID-JOC513>3.0.CO;2-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 2001: On the definition of a heat wave. J. Climate Appl. Meteor., 40, 762775, doi:10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothfusz, L. P., 1990: National Weather Service (NWS) Technical Attachment (SR 90-23), 2 pp. [Available online at https://www.weather.gov/media/bgm/ta_htindx.pdf.]

  • Schlenker, W., and M. J. Roberts, 2009: Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA, 106, 15 59415 598, doi:10.1073/pnas.0906865106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenza, J. C., C. H. Rubin, K. H. Falter, J. D. Selanikio, W. D. Flanders, H. L. Howe, and J. L. Wilhelm, 1996: Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med., 335, 8490, doi:10.1056/NEJM199607113350203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and L. S. Kalkstein, 2004: Progress in heat watch–warning system technology. Bull. Amer. Meteor. Soc., 85, 19311941, doi:10.1175/BAMS-85-12-1931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. T., B. F. Zaitchik, and J. M. Gohlke, 2013: Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118, 811825, doi:10.1007/s10584-012-0659-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souch, C., and C. S. B. Grimmond, 2004: Applied climatology: ‘Heat waves’. Prog. Phys. Geogr., 28, 599606, doi:10.1191/0309133304pp428pr.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1979: The assessment of sultriness. Part I: A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteor., 18, 861873, doi:10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1984: A universal scale of apparent temperature. J. Appl. Meteor., 23, 16741687, doi:10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, R. S., C. N. Williams Jr., T. C. Peterson, T. R. Karl, and D. R. Easterling, 2003: An evaluation of the time of observation bias adjustment in the U.S. Historical Climatology Network. Geophys. Res. Lett., 30, 2046, doi:10.1029/2003GL018111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, R. S., S. Applequist, M. J. Menne, C. N. Williams, and P. Thorne, 2012: An intercomparison of temperature trends in the U.S. Historical Climatology Network and recent atmospheric reanalyses. Geophys. Res. Lett., 39, L10703, doi:10.1029/2012GL051387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, M. A., N. S. Diffenbaugh, G. V. Jones, J. S. Pal, and F. Giorgi, 2006: Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA, 103, 11 21711 222, doi:10.1073/pnas.0603230103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 695 168 18
PDF Downloads 573 146 7