Salinity Variability Associated with the Positive Indian Ocean Dipole and Its Impact on the Upper Ocean Temperature

Shoichiro Kido Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Shoichiro Kido in
Current site
Google Scholar
PubMed
Close
and
Tomoki Tozuka Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Tomoki Tozuka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Both surface and subsurface salinity variability associated with positive Indian Ocean dipole (pIOD) events and its impacts on the sea surface temperature (SST) evolution are investigated through analysis of observational/reanalysis data and sensitivity experiments with a one-dimensional mixed layer model. During the pIOD, negative (positive) sea surface salinity (SSS) anomalies appear in the central-eastern equatorial Indian Ocean (southeastern tropical Indian Ocean). In addition to these SSS anomalies, positive (negative) salinity anomalies are found near the pycnocline in the eastern equatorial Indian Ocean (southern tropical Indian Ocean). A salinity balance analysis shows that these subsurface salinity anomalies are mainly generated by zonal and vertical salt advection anomalies induced by anomalous currents associated with the pIOD. These salinity anomalies stabilize (destabilize) the upper ocean stratification in the central-eastern equatorial (southeastern tropical) Indian Ocean. By decomposing observed densities into contribution from temperature and salinity anomalies, it is shown that the contribution from anomalous salinity stratification is comparable to that from anomalous thermal stratification. Furthermore, impacts of these salinity anomalies on the SST evolution are quantified for the first time using a one-dimensional mixed layer model. Since enhanced salinity stratification in the central-eastern equatorial Indian Ocean suppresses vertical mixing, significant warming of about 0.3°–0.5°C occurs. On the other hand, stronger vertical mixing associated with reduced salinity stratification results in significant SST cooling of about 0.2°–0.5°C in the southeastern tropical Indian Ocean. These results suggest that variations in salinity may potentially play a crucial role in the evolution of the pIOD.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shoichiro Kido, skido@eps.s.u-tokyo.ac.jp

Abstract

Both surface and subsurface salinity variability associated with positive Indian Ocean dipole (pIOD) events and its impacts on the sea surface temperature (SST) evolution are investigated through analysis of observational/reanalysis data and sensitivity experiments with a one-dimensional mixed layer model. During the pIOD, negative (positive) sea surface salinity (SSS) anomalies appear in the central-eastern equatorial Indian Ocean (southeastern tropical Indian Ocean). In addition to these SSS anomalies, positive (negative) salinity anomalies are found near the pycnocline in the eastern equatorial Indian Ocean (southern tropical Indian Ocean). A salinity balance analysis shows that these subsurface salinity anomalies are mainly generated by zonal and vertical salt advection anomalies induced by anomalous currents associated with the pIOD. These salinity anomalies stabilize (destabilize) the upper ocean stratification in the central-eastern equatorial (southeastern tropical) Indian Ocean. By decomposing observed densities into contribution from temperature and salinity anomalies, it is shown that the contribution from anomalous salinity stratification is comparable to that from anomalous thermal stratification. Furthermore, impacts of these salinity anomalies on the SST evolution are quantified for the first time using a one-dimensional mixed layer model. Since enhanced salinity stratification in the central-eastern equatorial Indian Ocean suppresses vertical mixing, significant warming of about 0.3°–0.5°C occurs. On the other hand, stronger vertical mixing associated with reduced salinity stratification results in significant SST cooling of about 0.2°–0.5°C in the southeastern tropical Indian Ocean. These results suggest that variations in salinity may potentially play a crucial role in the evolution of the pIOD.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shoichiro Kido, skido@eps.s.u-tokyo.ac.jp
Save
  • Ando, K., and M. J. McPhaden, 1997: Variability of surface layer hydrography in the tropical Pacific Ocean. J. Geophys. Res., 102, 23 06323 078, doi:10.1029/97JC01443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301304, doi:10.1038/323301a0.

  • Cai, W., and T. Cowan, 2013: Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 12001205, doi:10.1002/grl.50208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Y. Qiu, 2013: An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean dipole. J. Climate, 26, 28802890, doi:10.1175/JCLI-D-12-00483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., X.-T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean dipole to greenhouse warming. Nat. Geosci., 6, 9991007, doi:10.1038/ngeo2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto, and T. Yamagata, 2014: Increased frequency of extreme Indian Ocean dipole events due to greenhouse warming. Nature, 510, 254258, doi:10.1038/nature13327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, Y. Li, D. Wang, and M. J. McPhaden, 2015: Seasonal-to-interannual time-scale dynamics of the Equatorial Undercurrent in the Indian Ocean. J. Phys. Oceanogr., 45, 15321553, doi:10.1175/JPO-D-14-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, Y. Shu, Y. Li, D. Wang, and Q. Xie, 2016: The role of Equatorial Undercurrent in sustaining the Eastern Indian Ocean upwelling. Geophys. Res. Lett., 43, 64446451, doi:10.1002/2016GL069433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, N. S., 1988: The effect of salinity on tropical ocean models. J. Phys. Oceanogr., 18, 697707, doi:10.1175/1520-0485(1988)018<0697:TEOSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Currie, J. C., M. Lengaigne, J. Vialard, D. M. Kaplan, O. Aumont, S. W. A. Naqvi, and O. Maury, 2013: Indian Ocean dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences, 10, 66776698, doi:10.5194/bg-10-6677-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drushka, K., J. Sprintall, and S. T. Gille, 2014: Subseasonal variations in salinity and barrier-layer thickness in the eastern equatorial Indian Ocean. J. Geophys. Res. Oceans, 119, 805823, doi:10.1002/2013JC009422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and Y. Zhang, 2015: Satellite and Argo observed surface salinity variations in the tropical Indian Ocean and their association with the Indian Ocean dipole mode. J. Climate, 28, 695713, doi:10.1175/JCLI-D-14-00435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., W. Cai, and Y. Wu, 2013: A new type of the Indian Ocean dipole since the mid-1970s. J. Climate, 26, 959972, doi:10.1175/JCLI-D-12-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. Zhang, M. Feng, T. Wang, N. Zhang, and S. Wijffels, 2015: Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. Sci. Rep., 5, 16050, doi:10.1038/srep16050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, F., G. Alory, R. Dussin, and N. Reul, 2013: SMOS reveals the signature of Indian Ocean dipole events. Ocean Dyn., 63, 12031212, doi:10.1007/s10236-013-0660-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, S., and T. Tozuka, 2016: Two flavors of the Indian Ocean dipole. Climate Dyn., 46, 33713385, doi:10.1007/s00382-015-2773-0.

  • Feng, M., and S. Wijffels, 2002: Intraseasonal variability in the South Equatorial Current of the east Indian Ocean. J. Phys. Oceanogr., 32, 265277, doi:10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., and T. Hibiya, 2015: Assessment of the upper-ocean mixed layer parameterizations using a large eddy simulation model. J. Geophys. Res. Oceans, 120, 23502369, doi:10.1002/2014JC010665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2012: Assessment of turbulence closure models for resonant inertial response in the oceanic mixed layer using a large eddy simulation model. J. Oceanogr., 68, 285294, doi:10.1007/s10872-011-0095-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, doi:10.1038/312141a0.

  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, doi:10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grunseich, G., B. Subrahmanyam, V. S. N. Murty, and B. S. Giese, 2011: Sea surface salinity variability during the Indian Ocean dipole and ENSO events in the tropical Indian Ocean. J. Geophys. Res. Oceans, 116, C11013, doi:10.1029/2011JC007456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, LinHo, and J.-S. Kug, 2008: Asymmetry of the Indian Ocean dipole. Part I: Observational analysis. J. Climate, 21, 48344848, doi:10.1175/2008JCLI2222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horii, T., I. Ueki, K. Ando, T. Hasegawa, K. Mizuno, and A. Seiki, 2016: Impact of intraseasonal salinity variations on sea surface temperature in the eastern equatorial Indian Ocean. J. Oceanogr., 72, 313326, doi:10.1007/s10872-015-0337-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759, doi:10.5918/jamstecr.8.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, 2005: Stability-dependent exchange coefficients for air–sea fluxes. J. Atmos. Oceanic Technol., 22, 10801094, doi:10.1175/JTECH1747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keerthi, M. G., M. Lengaigne, J. Vialard, C. de Boyer Montégut, and P. M. Muraleedharan, 2013: Interannual variability of the tropical Indian Ocean mixed layer depth. Climate Dyn., 40, 743759, doi:10.1007/s00382-012-1295-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., C. Liang, Y. Tang, C. Dong, D. Chen, X. Liu, and W. Jin, 2016: A new dipole index of the salinity anomalies of the tropical Indian Ocean. Sci. Rep., 6, 24260, doi:10.1038/srep24260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and T. Lee, 2015: Intraseasonal sea surface salinity variability in the equatorial Indo-Pacific Ocean induced by Madden–Julian oscillations. J. Geophys. Res. Oceans, 120, 22332258, doi:10.1002/2014JC010647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., Y. Tang, D. Chen, and T. Lian, 2017: Predictability of the Indian Ocean dipole in the coupled models. Climate Dyn., 48, 20052024, doi:10.1007/s00382-016-3187-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., W. Yu, and T. Li, 2011: Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean dipole diagnosed from 23 WCRP CMIP3 models. J. Climate, 24, 49414958, doi:10.1175/2011JCLI4041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., S.-P. Xie, X.-T. Zheng, T. Li, Y. Du, G. Huang, and W. Yu, 2014: Indian Ocean variability in the CMIP5 multi-model ensemble: The zonal dipole mode. Climate Dyn., 43, 17151730, doi:10.1007/s00382-013-2000-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 33433357, doi:10.1029/90JC01951.

  • Luo, J., S. Masson, S. K. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190, doi:10.1175/JCLI4132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maes, C., 2002: Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys. Res. Lett., 29, 2206, doi:10.1029/2002GL016029.

  • Maes, C., J. Picaut, and S. Belamari, 2005: Importance of the salinity barrier layer for the buildup of El Niño. J. Climate, 18, 104118, doi:10.1175/JCLI-3214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, S., J.-P. Boulanger, C. Menkes, P. Delecluse, and T. Yamagata, 2004: Impact of salinity on the 1997 Indian Ocean dipole event in a numerical experiment. J. Geophys. Res., 109, C02002, doi:10.1029/2003JC001807.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., H. Hase, Y. Kuroda, H. Matsuura, and K. Takeuchi, 2005: Intraseasonal variability in the upper layer currents observed in the eastern equatorial Indian Ocean. Geophys. Res. Lett., 32, L02607, doi:10.1029/2004GL021896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogensen, K., M. A. Balmaseda, and A. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Tech. Memo. 668, 59 pp. [Available online at https://www.ecmwf.int/sites/default/files/elibrary/2012/11174-nemovar-ocean-data-assimilation-system-implemented-ecmwf-ocean-analysis-system-4.pdf.]

  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, doi:10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nyadjro, E. S., and M. J. McPhaden, 2014: Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. J. Geophys. Res. Oceans, 119, 79697986, doi:10.1002/2014JC010380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, doi:10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., M. Ioualalen, C. Menkes, T. Delcroix, and M. J. McPhaden, 1996: Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274, 14861489, doi:10.1126/science.274.5292.1486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, Y., W. Cai, L. Li, and X. Guo, 2012: Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean dipole. Geophys. Res. Lett., 39, L08605, doi:10.1029/2012GL051441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., and G. Meyers, 2005: Seasonal variation of barrier layer in the southeastern tropical Indian Ocean. J. Geophys. Res., 110, C11003, doi:10.1029/2004JC002816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, R. R., and R. Sivakumar, 2003: Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J. Geophys. Res., 108, 3009, doi:10.1029/2001JC000907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and T. Yamagata, 2004: Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys. Res. Lett., 31, L19306, doi:10.1029/2004GL020842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and S. K. Behera, 2005: Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dyn. Atmos. Oceans, 39, 103135, doi:10.1016/j.dynatmoce.2004.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res. II, 49, 15491572, doi:10.1016/S0967-0645(01)00158-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, doi:10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151169, doi:10.3354/cr025151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

  • Sayantani, O., and C. Gnanaseelan, 2015: Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms. Climate Dyn., 44, 24472462, doi:10.1007/s00382-014-2379-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, L., H. H. Hendon, O. Alves, J.-J. Luo, M. Balmaseda, and D. Anderson, 2012: How predictable is the Indian Ocean dipole? Mon. Wea. Rev., 140, 38673884, doi:10.1175/MWR-D-12-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and M. A. Alexander, 2004: Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res. I, 51, 619635, doi:10.1016/j.dsr.2004.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97, 73057316, doi:10.1029/92JC00407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, B., C. Gnanaseelan, and P. S. Salvekar, 2006: Variability in the Indian Ocean circulation and salinity and its impact on SST anomalies during dipole events. J. Mar. Res., 64, 853880, doi:10.1357/002224006779698350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., J.-J. Luo, S. Masson, and T. Yamagata, 2007: Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. J. Climate, 20, 28812894, doi:10.1175/JCLI4168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., S. Endo, and T. Yamagata, 2016: Anomalous Walker circulations associated with two flavors of the Indian Ocean dipole. Geophys. Res. Lett., 43, 53785384, doi:10.1002/2016GL068639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vialard, J., and P. Delecluse, 1998a: An OGCM study for the TOGA decade. Part I: Role of salinity in the physics of the western Pacific fresh pool. J. Phys. Oceanogr., 28, 10711088, doi:10.1175/1520-0485(1998)028<1071:AOSFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., and P. Delecluse, 1998b: An OGCM study for the TOGA decade. Part II: Barrier-layer formation and variability. J. Phys. Oceanogr., 28, 10891106, doi:10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., P. Delecluse, and C. Menkes, 2002: A modeling study of salinity variability and its effects in the tropical Pacific Ocean during the 1993–1999 period. J. Geophys. Res. Oceans, 107, 8002, doi:10.1029/2000JC000758.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, E., W. Cai, Y. Du, and S.-K. Min, 2014: Differentiating flavors of the Indian Ocean dipole using dominant modes in tropical Indian Ocean rainfall. Geophys. Res. Lett., 41, 89788986, doi:10.1002/2014GL062459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, doi:10.1126/science.181.4096.262.

  • Yamagata, T., S. K. Behera, J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth’s Climate, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189211, doi:10.1029/147GM12.

    • Search Google Scholar
    • Export Citation
  • Yu, W., B. Xiang, L. Liu, and N. Liu, 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32, L24706, doi:10.1029/2005GL024327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., and J. Potemra, 2006: Generation mechanism for the intraseasonal variability in the Indo-Australian basin. J. Geophys. Res., 111, C01013, doi:10.1029/2005JC003023.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Du, S. Zheng, Y. Yang, and X. Cheng, 2013: Impact of Indian Ocean dipole on the salinity budget in the equatorial Indian Ocean. J. Geophys. Res. Oceans, 118, 49114923, doi:10.1002/jgrc.20392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Du, and T. Qu, 2016: A sea surface salinity dipole mode in the tropical Indian Ocean. Climate Dyn., 47, 25732585, doi:10.1007/s00382-016-2984-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., and R.-H. Zhang, 2012: Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from Argo and satellite data. Dyn. Atmos. Oceans, 57, 4557, doi:10.1016/j.dynatmoce.2012.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., and R.-H. Zhang, 2015: Interannually varying salinity effects on ENSO in the tropical Pacific: A diagnostic analysis from Argo. Ocean Dyn., 65, 691705, doi:10.1007/s10236-015-0829-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., R.-H. Zhang, and J. Zhu, 2014: Effects of interannual salinity variability on the barrier layer in the western-central equatorial Pacific: A diagnostic analysis from Argo. Adv. Atmos. Sci., 31, 532542, doi:10.1007/s00376-013-3061-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, R.-H. Zhang, Z.-Z. Hu, A. Kumar, M. A. Balmaseda, L. Marx, and J. L. Kinter III, 2014: Salinity anomaly as a trigger for ENSO events. Sci. Rep., 4, 6821, doi:10.1038/srep06821.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1868 940 234
PDF Downloads 810 186 20