State Dependence of Atmospheric Response to Extratropical North Pacific SST Anomalies

Guidi Zhou GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Guidi Zhou in
Current site
Google Scholar
PubMed
Close
,
Mojib Latif GEOMAR Helmholtz Centre for Ocean Research Kiel, and Cluster of Excellence “The Future Ocean,” University of Kiel, Kiel, Germany

Search for other papers by Mojib Latif in
Current site
Google Scholar
PubMed
Close
,
Richard J. Greatbatch GEOMAR Helmholtz Centre for Ocean Research Kiel, and Cluster of Excellence “The Future Ocean,” University of Kiel, Kiel, Germany

Search for other papers by Richard J. Greatbatch in
Current site
Google Scholar
PubMed
Close
, and
Wonsun Park GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Wonsun Park in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

By performing two sets of high-resolution atmospheric general circulation model (AGCM) experiments, the authors find that the atmospheric response to a sea surface temperature (SST) anomaly in the extratropical North Pacific is sensitive to decadal variations of the background SST on which the SST anomaly is superimposed. The response in the first set of experiments, in which the SST anomaly is superimposed on the observed daily SST of 1981–90, strongly differs from the response in the second experiment, in which the same SST anomaly is superimposed on the observed daily SST of 1991–2000. The atmospheric response over the North Pacific during 1981–90 is eddy mediated, equivalent barotropic, and concentrated in the east. In contrast, the atmospheric response during 1991–2000 is weaker and strongest in the west. The results are discussed in terms of Rossby wave dynamics, with the proposed primary wave source switching from baroclinic eddy vorticity forcing over the eastern North Pacific in 1981–90 to mean-flow divergence over the western North Pacific in 1991–2000. The wave source changes are linked to the decadal reduction of daily SST variability over the eastern North Pacific and strengthening of the Oyashio Extension front over the western North Pacific. Thus, both daily and frontal aspects of the background SST variability in determining the atmospheric response to extratropical North Pacific SST anomalies are emphasized by these AGCM experiments.

Current affiliation: Max Planck Institute for Meteorology, Hamburg, Germany.

Corresponding author e-mail: Dr. Guidi Zhou, guidi.zhou@mpimet.mpg.de

Abstract

By performing two sets of high-resolution atmospheric general circulation model (AGCM) experiments, the authors find that the atmospheric response to a sea surface temperature (SST) anomaly in the extratropical North Pacific is sensitive to decadal variations of the background SST on which the SST anomaly is superimposed. The response in the first set of experiments, in which the SST anomaly is superimposed on the observed daily SST of 1981–90, strongly differs from the response in the second experiment, in which the same SST anomaly is superimposed on the observed daily SST of 1991–2000. The atmospheric response over the North Pacific during 1981–90 is eddy mediated, equivalent barotropic, and concentrated in the east. In contrast, the atmospheric response during 1991–2000 is weaker and strongest in the west. The results are discussed in terms of Rossby wave dynamics, with the proposed primary wave source switching from baroclinic eddy vorticity forcing over the eastern North Pacific in 1981–90 to mean-flow divergence over the western North Pacific in 1991–2000. The wave source changes are linked to the decadal reduction of daily SST variability over the eastern North Pacific and strengthening of the Oyashio Extension front over the western North Pacific. Thus, both daily and frontal aspects of the background SST variability in determining the atmospheric response to extratropical North Pacific SST anomalies are emphasized by these AGCM experiments.

Current affiliation: Max Planck Institute for Meteorology, Hamburg, Germany.

Corresponding author e-mail: Dr. Guidi Zhou, guidi.zhou@mpimet.mpg.de
Save
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 24192433, doi:10.1175/1520-0442(1999)012<2419:TROSAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, doi:10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air-sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. J. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992a: Latent and sensible heat-flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354369, doi:10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992b: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881, doi:10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992c: Variability of latent and sensible heat fluxes estimated using bulk formulas. Atmos.–Ocean, 30, 142, doi:10.1080/07055900.1992.9649429.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 1999: Influence of the North Atlantic SST on the atmospheric circulation. Geophys. Res. Lett., 26, 29692972, doi:10.1029/1999GL900613.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, doi:10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6, 17431753, doi:10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys., 23, 357390, doi:10.1029/RG023i004p00357.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592606, doi:10.1175/JCLI4021.1.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y. O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, doi:10.1175/2010JCLI3731.1.

    • Search Google Scholar
    • Export Citation
  • Gan, B., and L. Wu, 2012: Modulation of atmospheric response to North Pacific SST anomalies under global warming: A statistical assessment. J. Climate, 25, 65546566, doi:10.1175/JCLI-D-11-00493.1.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955, doi:10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., M. Latif, N. S. Keenlyside, W. Park, and K. P. Koltermann, 2013: North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature, 499, 464467, doi:10.1038/nature12268.

    • Search Google Scholar
    • Export Citation
  • Honda, M., H. Nakamura, J. Ukita, I. Kousaka, and K. Takeuchi, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J. Climate, 14, 10291042, doi:10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Honda, M., Y. Kushnir, H. Nakamura, S. Yamane, and S. E. Zebiak, 2005: Formation, mechanisms, and predictability of the Aleutian–Icelandic low seesaw in ensemble AGCM simulations. J. Climate, 18, 14231434, doi:10.1175/JCLI3353.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, doi:10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., and I. M. Held, 1996: Equilibrium atmospheric response to North Atlantic SST anomalies. J. Climate, 9, 12081220, doi:10.1175/1520-0442(1996)009<1208:EARTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and C. Deser, 2007: North Pacific decadal variability in the Community Climate System Model version 2. J. Climate, 20, 24162433, doi:10.1175/JCLI4103.1.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634637, doi:10.1126/science.266.5185.634.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 24072423, doi:10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, D. E., Z. Liu, and Y. Liu, 2008: Beyond thermal interaction between ocean and atmosphere: On the extratropical climate variability due to the wind-induced SST. J. Climate, 21, 20012018, doi:10.1175/2007JCLI1532.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and H. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 14901503, doi:10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Q., 2006: Climatological analysis of planetary wave propagation in Northern Hemisphere winter. Max Planck Institute for Meteorology Earth System Science Rep. 35, 160 pp. [Available online at https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/WEB_BzE_35.pdf.]

  • Liu, Q., N. Wen, and Z. Liu, 2006: An observational study of the impact of the North Pacific SST on the atmosphere. Geophys. Res. Lett., 33, L18611, doi:10.1029/2006GL026082.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and L. Wu, 2004: Atmospheric response to North Pacific SST: The role of ocean–atmosphere coupling. J. Climate, 17, 18591882, doi:10.1175/1520-0442(2004)017<1859:ARTNPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Y. Liu, L. Wu, and R. Jacob, 2007: Seasonal and long-term atmospheric responses to reemerging North Pacific Ocean variability: A combined dynamical and statistical assessment. J. Climate, 20, 955980, doi:10.1175/JCLI4041.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., L. Fan, S. I. Shin, and Q. Liu, 2012a: Assessing atmospheric response to surface forcing in the observations. Part II: Cross validation of seasonal response using GEFA and LIM. J. Climate, 25, 68176834, doi:10.1175/JCLI-D-11-00630.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., N. Wen, and L. Fan, 2012b: Assessing atmospheric response to surface forcing in the observations. Part I: Cross validation of annual response using GEFA, LIM, and FDT. J. Climate, 25, 67966816, doi:10.1175/JCLI-D-11-00545.1.

    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, doi:10.1038/nature18640.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78, 22152225, doi:10.1175/1520-0477(1997)078<2215:DCVITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, doi:10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Z. Sun, 1985: A modelling and observational study of the relationship between sea surface temperature in the north-west Atlantic and the atmospheric general circulation. Quart. J. Roy. Meteor. Soc., 111, 947975, doi:10.1002/qj.49711147003.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408, doi:10.1175/1520-0442(1999)012<1393:MDTART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, S., L. A. Mysak, J. Derome, H. Ritchie, and B. Dugas, 1995: The difference between early and middle winter atmospheric response to sea surface temperature anomalies in the northwest Atlantic. J. Climate, 8, 137157, doi:10.1175/1520-0442(1995)008<0137:TDBEAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971987, doi:10.1175/1520-0442(1997)010<0971:TMARTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5: Part 1: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp. [Available online at http://mms.dkrz.de/pdf/klimadaten/service_support/documents/mpi_report_349.pdf.]

  • Saravanan, R., 1998: Atmospheric low-frequency variability and its relationship to midlatitude SST variability: Studies using the NCAR climate system model. J. Climate, 11, 13861404, doi:10.1175/1520-0442(1998)011<1386:ALFVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, M. A. Alexander, Y.-O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 11261147, doi:10.1175/JCLI-D-14-00285.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., H. Nakamura, M. Nonaka, and S.-P. Xie, 2009: Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22, 65366560, doi:10.1175/2009JCLI2910.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., H. Nakamura, M. Nonaka, N. Komori, A. Kuwano-Yoshida, K. Takaya, and A. Goto, 2012: Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: Observations and a coupled model simulation. J. Climate, 25, 111139, doi:10.1175/JCLI-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and S. Peng, 1995: Dynamics of the early and middle winter atmospheric responses to the northwest Atlantic SST anomalies. J. Climate, 8, 22392254, doi:10.1175/1520-0442(1995)008<2239:DOTEAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, Q. Liu, and C. Frankignoul, 2010: Observed atmospheric responses to global SST variability modes: A unified assessment using GEFA. J. Climate, 23, 17391759, doi:10.1175/2009JCLI3027.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, doi:10.1038/nclimate1353.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zhong, Y., and Z. Liu, 2008: A joint statistical and dynamical assessment of atmospheric response to North Pacific oceanic variability in CCSM3. J. Climate, 21, 60446051, doi:10.1175/2008JCLI2195.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, G., M. Latif, R. J. Greatbatch, and W. Park, 2015: Atmospheric response to the North Pacific enabled by daily sea surface temperature variability. Geophys. Res. Lett., 42, 77327739, doi:10.1002/2015GL065356.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1886 850 119
PDF Downloads 334 55 7