Arctic and East Asia Winter Climate Variations Associated with the Eastern Atlantic Pattern

Songmiao Fan NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Songmiao Fan in
Current site
Google Scholar
PubMed
Close
and
Xiaosong Yang NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Xiaosong Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The wintertime Arctic temperature (T; surface–400 hPa) decreased from 1979 to 1997 and increased rapidly from 1998 to 2012, in contrast to the global mean surface air temperature. Here aspects of circulation variability that are associated with these temperature changes are examined using the NCEP–NCAR reanalysis and ERA-Interim products. It is found that the Nordic–Siberia seesaw of meridional winds near 70°N is associated with two-thirds of the variance of the Arctic winter mean T, possibly contributing to the cooling and warming trends. It is suggested here that the seesaw accounts for much of the difference in Arctic amplification between observations and climate models. Growth of sea ice in winter is hindered by southerly winds over the Nordic region (0°–60°E). Through modulation of the wind seesaw, the eastern Atlantic (EA) pattern is found to be significantly associated with Arctic and East Asia winter climate variations. In one phase of the EA pattern, a midlatitude North Atlantic ridge anomaly is associated with a poleward shift of the mean storm track, a weakened eddy-driven jet over Eurasia, and above-normal sea level pressure (SLP) over Siberia, most significantly in the region to the northwest of Lake Baikal. The EA pattern is associated with two-thirds of the variance of winter-average SLP over Siberia.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0741.s1.

Corresponding author e-mail: Songmiao Fan, songmiao.fan@noaa.gov

Abstract

The wintertime Arctic temperature (T; surface–400 hPa) decreased from 1979 to 1997 and increased rapidly from 1998 to 2012, in contrast to the global mean surface air temperature. Here aspects of circulation variability that are associated with these temperature changes are examined using the NCEP–NCAR reanalysis and ERA-Interim products. It is found that the Nordic–Siberia seesaw of meridional winds near 70°N is associated with two-thirds of the variance of the Arctic winter mean T, possibly contributing to the cooling and warming trends. It is suggested here that the seesaw accounts for much of the difference in Arctic amplification between observations and climate models. Growth of sea ice in winter is hindered by southerly winds over the Nordic region (0°–60°E). Through modulation of the wind seesaw, the eastern Atlantic (EA) pattern is found to be significantly associated with Arctic and East Asia winter climate variations. In one phase of the EA pattern, a midlatitude North Atlantic ridge anomaly is associated with a poleward shift of the mean storm track, a weakened eddy-driven jet over Eurasia, and above-normal sea level pressure (SLP) over Siberia, most significantly in the region to the northwest of Lake Baikal. The EA pattern is associated with two-thirds of the variance of winter-average SLP over Siberia.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0741.s1.

Corresponding author e-mail: Songmiao Fan, songmiao.fan@noaa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 2.49 MB)
Save
  • Adames, A. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, doi:10.1175/JAS-D-13-0254.1.

    • Search Google Scholar
    • Export Citation
  • Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm track. J. Atmos. Sci., 67, 13611381, doi:10.1175/2009JAS3270.1.

    • Search Google Scholar
    • Export Citation
  • Bao, M., and D. L. Hartmann, 2014: The response to MJO-like forcing in a nonlinear shallow-water model. Geophys. Res. Lett., 41, 13221328, doi:10.1002/2013GL057683.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2015: CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Climate, 28, 52545271, doi:10.1175/JCLI-D-14-00589.1.

    • Search Google Scholar
    • Export Citation
  • Bastos, A., and Coauthors, 2016: European land CO2 sink influenced by NAO and East-Atlantic pattern coupling. Nat. Commun., 7, 10315, doi:10.1038/ncomms10315.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and E. C. van der Linden, 2013: The changing seasonal climate in the Arctic. Sci. Rep., 3, 1556, doi:10.1038/srep01556.

  • Blackmon, M. L., Y.-H. Lee, J. M. Wallace, and H.-H. Hsu, 1984: Time variation of 500 mb height fluctuations with long, intermediate and short time scales as deduced from lag-correlation statistics. J. Atmos. Sci., 41, 981991, doi:10.1175/1520-0469(1984)041<0981:TVOMHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burt, M. B., D. A. Randall, and M. D. Branson, 2016: Dark warming. J. Climate, 29, 705719, doi:10.1175/JCLI-D-15-0147.1.

  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., and L. Terray, 2001a: Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe winter climate. Geophys. Res. Lett., 28, 31953198, doi:10.1029/2000GL012510.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., and L. Terray, 2001b: Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European sector: A study with the ARPEGE model. J. Climate, 14, 42664291, doi:10.1175/1520-0442(2001)014<4266:OFOTWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, H. W., Q. Zhang, H. Körnich, and D. Chen, 2013: A robust mode of climate variability in the Arctic: The Barents Oscillation. Geophys. Res. Lett., 40, 28562861, doi:10.1002/grl.50551.

    • Search Google Scholar
    • Export Citation
  • Cheung, H. N., W. Zhou, H. Y. Mok, and M. C. Wu, 2012: Relationship between Ural-Siberian blocking and the East Asia winter monsoon in relation to the Arctic Oscillation and the El Niño–Southern Oscillation. J. Climate, 25, 42424257, doi:10.1175/JCLI-D-11-00225.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345348, doi:10.1029/1998GL900321.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., K. Saito, and E. D. Entekhabi, 2001: The role of the Siberian high in Northern Hemisphere climate variability. Geophys. Res. Lett., 28, 299302, doi:10.1029/2000GL011927.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, doi:10.1088/1748-9326/7/1/014007.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, G. A. Vecchi, X. Yang, L. Zhang, and R. Zhang, 2016: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci., 9, 509512, doi:10.1038/ngeo2738.

    • Search Google Scholar
    • Export Citation
  • Deser, S., 2000: On the teleconnectivity of the Arctic oscillation. Geophys. Res. Lett., 27, 779782, doi:10.1029/1999GL010945.

  • Ding, Q., J. W. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209213, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1990: Build-up, air mass transformation and propagating of Siberian high and its relations to cold surge in East Asia. Meteor. Atmos. Phys., 44, 281292, doi:10.1007/BF01026822.

    • Search Google Scholar
    • Export Citation
  • Fan, S.-M., L. Harris, and L. W. Horowitz, 2015: Atmospheric energy transport to the Arctic 1979–2012. Tellus, 67A, 25482, doi:10.3402/tellusa.v67.25482.

    • Search Google Scholar
    • Export Citation
  • Feng, C., and B. Wu, 2015: Enhancement of Arctic winter warming by the Siberian high over the past decade. Atmos. Oceanic Sci. Lett., 8, 257263, doi:10.3878/AOSL20150022.

    • Search Google Scholar
    • Export Citation
  • Foster, G., and S. Rahmstorf, 2011: Global temperature evolution 1979–2010. Environ. Res. Lett., 6, 044022, doi:10.1088/1748-9326/6/4/044022.

    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 279 pp.

  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 25612568, doi:10.1175/JCLI-D-11-00449.1.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., T. Ou, H. W. Linerholm, B.-K. Kim, S.-J. Kim, J.-S. Kug, and D. Chen, 2011: Recent recovery of the Siberian high intensity. J. Geophys. Res., 116, D23102, doi:10.1029/2011JD015904.

    • Search Google Scholar
    • Export Citation
  • Joung, C. H., and M. H. Hitchman, 1982: On the role of successive downstream development in East Asian polar air outbreaks. Mon. Wea. Rev., 110, 12241237, doi:10.1175/1520-0493(1982)110<1224:OTROSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jun, S.-Y., C.-H. Ho, J.-H. Jeong, Y.-S. Choi, and B.-M. Kim, 2016: Recent changes in winter Arctic clouds and their relationships with sea ice and atmospheric conditions. Tellus, 68A, 29130, doi:10.3402/tellusa.v68.29130.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, T. Economou, and M. Tjernström, 2014: The importance of spring atmospheric conditions for predictions of the Arctic summer. Geophys. Res. Lett., 41, 52885296, doi:10.1002/2014GL060826.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., and Coauthors, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759762, doi:10.1038/ngeo2517.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C., B. Stevens, and J. Marotzke, 2015: Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett., 42, 81318139, doi:10.1002/2015GL065327.

    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., and H.-D. Kim, 2013: Impact of the dominant large-scale teleconnections on winter temperature variability over East Asia. J. Geophys. Res. Atmos., 118, 78357848, doi:10.1002/jgrd.50462.

    • Search Google Scholar
    • Export Citation
  • Meier, W., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve, 2013: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, version 2. National Snow and Ice Data Center, doi:10.7265/N55M63M1.

  • Miller, G. H., E. B. Alley, J. Brigham-Grette, J. J. Fitzpatrick, L. Polyak, M. C. Serreze, and J. W. C. White, 2010: Arctic amplification: Can the past constrain the future? Quat. Sci. Rev., 29, 17791790, doi:10.1016/j.quascirev.2010.02.008.

    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236, doi:10.2151/jmsj.86.213.

    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, doi:10.1038/ngeo2277.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res. Atmos., 120, 32093227, doi:10.1002/2014JD022848.

    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., T. Eldevik, M. Årthun, R. B. Ingvaldsen, and L. H. Smedsrud, 2015: Skillful prediction of Barents Sea ice cover. Geophys. Res. Lett., 42, 53645371, doi:10.1002/2015GL064359.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19, doi:10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and mid-latitude weather patterns: Are they connected? J. Climate, 28, 79177932, doi:10.1175/JCLI-D-14-00822.1.

    • Search Google Scholar
    • Export Citation
  • Panagiotopoulos, F., M. Shahgedanova, A. Hannachi, and D. B. Stephenson, 2005: Observed trends and teleconnections of the Siberian high: A recently declining center of action. J. Climate, 18, 14111422, doi:10.1175/JCLI3352.1.

    • Search Google Scholar
    • Export Citation
  • Peng, G., W. Meier, D. Scott, and M. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and modeling. Earth Syst. Sci. Data, 5, 311318, doi:10.5194/essd-5-311-2013.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., M. Hoerling, and R. Dole, 2015: Arctic tropospheric warming: Causes and linkages to lower latitudes. J. Climate, 28, 21542167, doi:10.1175/JCLI-D-14-00095.1.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and J. A. Francis, 2016: Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Climate Change, 6, 856860, doi:10.1038/nclimate3011.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and I. Simmonds, 2012: Local and remote controls on observed Arctic warming. Geophys. Res. Lett., 39, L10709, doi:10.1029/2012GL051598.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, doi:10.1175/JCLI-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., and M. Latif, 2015: Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environ. Res. Lett., 10, 054020, doi:10.1088/1748-9326/10/5/054020.

    • Search Google Scholar
    • Export Citation
  • Skeie, P., 2000: Meridional flow variability over the Nordic seas in the Arctic Oscillation framework. Geophys. Res. Lett., 27, 25692572, doi:10.1029/2000GL011529.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., and Coauthors, 2013: The role of the Barents Sea in the Arctic climate system. Rev. Geophys., 51, 415449, doi:10.1002/rog.20017.

    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., and J. M. Wallace, 2015: On the leading patterns of Northern Hemisphere sea level pressure variability. J. Atmos. Sci., 72, 34693486, doi:10.1175/JAS-D-14-0371.1.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586, doi:10.1111/j.1600-0870.2008.00314.x.

    • Search Google Scholar
    • Export Citation
  • Stramler, K., A. D. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 17471762, doi:10.1175/2010JCLI3817.1.

    • Search Google Scholar
    • Export Citation
  • Sun, L., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 53455352, doi:10.1002/2016GL069024.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, doi:10.1126/science.1058958.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and N. A. Bond, 2004: The Madden–Julian oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett., 31, L04104, doi:10.1029/2003GL018645.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Q. Fu, B. V. Smoliak, P. Lin, and C. M. Johanson, 2012: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proc. Natl. Acad. Sci. USA, 109, 14 33714 342, doi:10.1073/pnas.1204875109.

    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67, 14201437, doi:10.1175/2009JAS3194.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Wang, and J. E. Walsh, 2006: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Climate, 19, 210225, doi:10.1175/JCLI3619.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., D. Handorf, K. Dethloff, A. Rinke, and A. Hu, 2013: Winter weather patterns over northern Eurasia and Arctic sea ice loss. Mon. Wea. Rev., 141, 37863800, doi:10.1175/MWR-D-13-00046.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Su, and R. D’Arrigo, 2015: Patterns of Asian winter climate variability and links to Arctic sea ice. J. Climate, 28, 68416858, doi:10.1175/JCLI-D-14-00274.1.

    • Search Google Scholar
    • Export Citation
  • Yang, S., K.-M. Lau, and K.-M. Lau, 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15, 306325, doi:10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Feldstein, and S. Lee, 2011: The impact of the Madden–Julian oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winters. Geophys. Res. Lett., 38, L24804, doi:10.1029/2011GL049881.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Mechanism of Arctic air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, doi:10.1175/JCLI-D-11-00566.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., C. Lu, and Z. Guan, 2012: Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environ. Res. Lett., 7, 044044, doi:10.1088/1748-9326/7/4/044044.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 668 209 58
PDF Downloads 348 58 6