• Ballarotta, M., S. Falahat, L. Brodeau, and K. Döös, 2014: On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater. Ocean Sci., 10, 907921, doi:10.5194/os-10-907-2014.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., A. Beljaars, K. Scipal, P. Viterbo, B. van den Hurk, M. Hirschi, and A. K. Betts, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, M. Leutbecher, M. Rodwell, E. Vitart, and G. Balsamo, 2008: Advances in predicting atmospheric variability with the ECMWF model. Quart. J. Roy. Meteor. Soc., 134, 13371351, doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27, 581591, doi:10.1175/1520-0485(1997)027<0581:AMFIRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388, doi:10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bouillon, S., M. A. M. Maqueda, V. Legat, and T. Fichefet, 2009: Sea ice model formulated on Arakawa B and C grids. Ocean Modell., 27, 174184, doi:10.1016/j.ocemod.2009.01.004.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., and Coauthors, 1991: The great ocean conveyor. Oceanography, 4, 7989, doi:10.5670/oceanog.1991.07.

  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, doi:10.1175/JAS3695.1.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and J. Nilsson, 2011: Analysis of the meridional energy transport by atmospheric overturning circulations. J. Atmos. Sci., 68, 18061820, doi:10.1175/2010JAS3493.1.

    • Search Google Scholar
    • Export Citation
  • Döös, K., J. Nilsson, J. Nycander, L. Brodeau, and M. Ballarotta, 2012: The world ocean thermohaline circulation. J. Phys. Oceanogr., 42, 14451460, doi:10.1175/JPO-D-11-0163.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., and J. Marshall, 2015: Freshwater transport in the coupled ocean-atmosphere system: A passive ocean. Ocean Dyn., 65, 10291036, doi:10.1007/s10236-015-0846-6.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. M. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646, doi:10.1029/97JC00480.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. D. Zika, T. J. McDougall, B. M. Sloyan, and F. Lalibérté, 2014: The representation of ocean circulation and variability in thermodynamic coordinates. J. Phys. Oceanogr., 44, 17351750, doi:10.1175/JPO-D-13-0213.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless Earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571363, doi:10.1175/2010BAMS2877.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2012: EC-Earth V2.2: Description and validation of a new seamless Earth system prediction model. Climate Dyn., 39, 26112629, doi:10.1007/s00382-011-1228-5.

    • Search Google Scholar
    • Export Citation
  • Held, I., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, doi:10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, doi:10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, doi:10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kjellsson, J., 2015: Weakening of the global atmospheric circulation with global warming. Climate Dyn., 45, 975988, doi:10.1007/s00382-014-2337-8.

    • Search Google Scholar
    • Export Citation
  • Kjellsson, J., K. Döös, F. Lalibérté, and J. Zika, 2014: The atmospheric general circulation in thermodynamical coordinates. J. Atmos. Sci., 71, 916928, doi:10.1175/JAS-D-13-0173.1.

    • Search Google Scholar
    • Export Citation
  • Kjellsson, J., and Coauthors, 2015: Model sensitivity of the Weddell and Ross Seas, Antarctica, to vertical mixing and freshwater forcing. Ocean Modell., 94, 141152, doi:10.1016/j.ocemod.2015.08.003.

    • Search Google Scholar
    • Export Citation
  • Laliberté, F., J. Zika, L. Mudryk, P. Kushner, J. Kjellsson, and K. Döös, 2015: Constrained work output of the moist atmospheric heat engine in a warming climate. Science, 347, 540543, doi:10.1126/science.1257103.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pole de Modélisation de l’Institut Pierre-Simon Laplace 27, 217 pp.

  • Martin, T., W. Park, and M. Latif, 2013: Multi-centennial variability controlled by Southern Ocean convection in the Kiel climate model. Climate Dyn., 40, 20052022, doi:10.1007/s00382-012-1586-7.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., and H. Körnich, 2008: A conceptual model of the surface salinity distribution in the oceanic Hadley cell. J. Climate, 21, 65866598, doi:10.1175/2008JCLI2284.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078, doi:10.1126/science.1159649.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2010: The global atmospheric circulation in moist isentropic coordinates. J. Climate, 23, 30773093, doi:10.1175/2009JCLI2789.1.

    • Search Google Scholar
    • Export Citation
  • Pemberton, P., J. Nilsson, M. Hieronymus, and H. E. M. Meier, 2015: Arctic Ocean water mass transformation in salt coordinates. J. Phys. Oceanogr., 45, 10251050, doi:10.1175/JPO-D-14-0197.1.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, doi:10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and K. R. Saha, 1974: Computation of non-divergent streamfunction and irrotational velocity potential from the observed winds. Mon. Wea. Rev., 102, 419425, doi:10.1175/1520-0493(1974)102<0419:CONDSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., and Coauthors, 2012: A look at the ocean in the EC-Earth climate model. Climate Dyn., 39, 26312657, doi:10.1007/s00382-011-1239-2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2006: OASIS3 user guide. CERFACS PRISM Support Initiative Rep. 3, 64 pp.

  • Zika, J. D., M. H. England, and W. P. Sijp, 2012: The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 42, 708724, doi:10.1175/JPO-D-11-0139.1.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., N. Skliris, A. J. G. Nurser, S. A. Josey, L. Mudryk, F. Laliberté, and R. Marsh, 2015: Maintenance and broadening of the ocean’s salinity distribution by the water cycle. J. Climate, 28, 95509560, doi:10.1175/JCLI-D-15-0273.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 271 123 4
PDF Downloads 170 102 4

The Coupled Ocean–Atmosphere Hydrothermohaline Circulation

View More View Less
  • 1 Department of Meteorology, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 2 Department of Physics, University of Oxford, Oxford, United Kingdom
  • | 3 Department of Physics, and Grantham Institute–Climate Change and the Environment, Imperial College London, London, United Kingdom
  • | 4 Climate Research Division, Environment Canada, Toronto, Ontario, Canada
  • | 5 Department of Meteorology, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Restricted access

Abstract

The thermohaline circulation of the ocean is compared to the hydrothermal circulation of the atmosphere. The oceanic thermohaline circulation is expressed in potential temperature–absolute salinity space and comprises a tropical cell, a conveyor belt cell, and a polar cell, whereas the atmospheric hydrothermal circulation is expressed in potential temperature–specific humidity space and unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. The oceanic thermohaline streamfunction makes it possible to analyze and quantify the entire World Ocean conversion rate between cold–warm and fresh–saline waters in one single representation. Its atmospheric analog, the hydrothermal streamfunction, instead captures the conversion rate between cold–warm and dry–humid air in one single representation. It is shown that the ocean thermohaline and the atmospheric hydrothermal cells are connected by the exchange of heat and freshwater through the sea surface. The two circulations are compared on the same diagram by scaling the axes such that the latent heat energy required to move an air parcel on the moisture axis is equivalent to that needed to move a water parcel on the salinity axis. Such a comparison leads the authors to propose that the Clausius–Clapeyron relationship guides both the moist branch of the atmospheric hydrothermal circulation and the warming branches of the tropical and conveyor belt cells of the oceanic thermohaline circulation.

Denotes Open Access content.

Corresponding author e-mail: Kristofer Döös, doos@misu.su.se

Abstract

The thermohaline circulation of the ocean is compared to the hydrothermal circulation of the atmosphere. The oceanic thermohaline circulation is expressed in potential temperature–absolute salinity space and comprises a tropical cell, a conveyor belt cell, and a polar cell, whereas the atmospheric hydrothermal circulation is expressed in potential temperature–specific humidity space and unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. The oceanic thermohaline streamfunction makes it possible to analyze and quantify the entire World Ocean conversion rate between cold–warm and fresh–saline waters in one single representation. Its atmospheric analog, the hydrothermal streamfunction, instead captures the conversion rate between cold–warm and dry–humid air in one single representation. It is shown that the ocean thermohaline and the atmospheric hydrothermal cells are connected by the exchange of heat and freshwater through the sea surface. The two circulations are compared on the same diagram by scaling the axes such that the latent heat energy required to move an air parcel on the moisture axis is equivalent to that needed to move a water parcel on the salinity axis. Such a comparison leads the authors to propose that the Clausius–Clapeyron relationship guides both the moist branch of the atmospheric hydrothermal circulation and the warming branches of the tropical and conveyor belt cells of the oceanic thermohaline circulation.

Denotes Open Access content.

Corresponding author e-mail: Kristofer Döös, doos@misu.su.se
Save