The Non-Gaussianity and Spatial Asymmetry of Temperature Extremes Relative to the Storm Track: The Role of Horizontal Advection

Chaim I. Garfinkel The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Chaim I. Garfinkel in
Current site
Google Scholar
PubMed
Close
and
Nili Harnik Department of Geosciences, Tel Aviv University, Tel Aviv, Israel, and the Department of Meteorology at Stockholm University, Stockholm, Sweden

Search for other papers by Nili Harnik in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The distribution of near-surface and tropospheric temperature variability in midlatitudes is distinguishable from a Gaussian in meteorological reanalysis data; consistent with this, warm extremes occur preferentially poleward of the location of cold extremes. To understand the factors that drive this non-Gaussianity, a dry general circulation model and a simple model of Lagrangian temperature advection are used to investigate the connections between dynamical processes and the occurrence of extreme temperature events near the surface. The non-Gaussianity evident in reanalysis data is evident in the dry model experiments, and the location of extremes is influenced by the location of the jet stream and storm track. The cause of this in the model can be traced back to the synoptic evolution within the storm track leading up to cold and warm extreme events: negative temperature extremes occur when an equatorward propagating high–low couplet (high to the west) strongly advects isotherms equatorward over a large meridional fetch over more than two days. Positive temperature anomalies occur when a poleward propagating low–high couplet (low to the west) advects isotherms poleward over a large meridional fetch over more than two days. The magnitude of the extremes is enhanced by the meridional movement of the systems. Overall, horizontal temperature advection by storm track systems can account for the warm/cold asymmetry in the latitudinal distribution of the temperature extremes.

Denotes Open Access content.

Publisher’s Note: This article was revised on 12 July 2024 to correct a typographical error in Eq.(2) that was present when originally published.

Corresponding author address: Chaim I. Garfinkel, Earth Science Institute, Hebrew University, Givat Ram Campus, Jerusalem 91904, Israel. E-mail: chaim.garfinkel@mail.huji.ac.il

Abstract

The distribution of near-surface and tropospheric temperature variability in midlatitudes is distinguishable from a Gaussian in meteorological reanalysis data; consistent with this, warm extremes occur preferentially poleward of the location of cold extremes. To understand the factors that drive this non-Gaussianity, a dry general circulation model and a simple model of Lagrangian temperature advection are used to investigate the connections between dynamical processes and the occurrence of extreme temperature events near the surface. The non-Gaussianity evident in reanalysis data is evident in the dry model experiments, and the location of extremes is influenced by the location of the jet stream and storm track. The cause of this in the model can be traced back to the synoptic evolution within the storm track leading up to cold and warm extreme events: negative temperature extremes occur when an equatorward propagating high–low couplet (high to the west) strongly advects isotherms equatorward over a large meridional fetch over more than two days. Positive temperature anomalies occur when a poleward propagating low–high couplet (low to the west) advects isotherms poleward over a large meridional fetch over more than two days. The magnitude of the extremes is enhanced by the meridional movement of the systems. Overall, horizontal temperature advection by storm track systems can account for the warm/cold asymmetry in the latitudinal distribution of the temperature extremes.

Denotes Open Access content.

Publisher’s Note: This article was revised on 12 July 2024 to correct a typographical error in Eq.(2) that was present when originally published.

Corresponding author address: Chaim I. Garfinkel, Earth Science Institute, Hebrew University, Givat Ram Campus, Jerusalem 91904, Israel. E-mail: chaim.garfinkel@mail.huji.ac.il
Save
  • Ballester, J., F. Giorgi, and X. Rodó, 2010: Changes in European temperature extremes can be predicted from changes in PDF central statistics. Climatic Change, 98, 277284, doi:10.1007/s10584-009-9758-0.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 47344739, doi:10.1002/grl.50880.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2012: Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. J. Geophys. Res., 117, D09117, doi:10.1029/2012JD017469.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., J. Slingo, and T. Woollings, 2012: A methodology for the comparison of blocking climatologies across indices, models and climate scenarios. Climate Dyn., 38, 24672481, doi:10.1007/s00382-011-1243-6.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., E. Dunn-Sigouin, G. Masato, and T. Woollings, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638644, doi:10.1002/2013GL058745.

    • Search Google Scholar
    • Export Citation
  • Berg, A., B. R. Lintner, K. L. Findell, S. Malyshev, P. C. Loikith, and P. Gentine, 2014: Impact of soil moisture–atmosphere interactions on surface temperature distribution. J. Climate, 27, 79767993, doi:10.1175/JCLI-D-13-00591.1.

    • Search Google Scholar
    • Export Citation
  • Bieli, M., S. Pfahl, and H. Wernli, 2015: A Lagrangian investigation of hot and cold temperature extremes in Europe. Quart. J. Roy. Meteor. Soc., 141, 98108, doi:10.1002/qj.2339.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Booth, J. F., S. Wang, and L. Polvani, 2013: Midlatitude storms in a moister world: Lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41, 787802, doi:10.1007/s00382-012-1472-3.

    • Search Google Scholar
    • Export Citation
  • Buehler, T., C. C. Raible, and T. F. Stocker, 2011: The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus, 63A, 212222, doi:10.1111/j.1600-0870.2010.00492.x.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903, doi:10.1175/JCLI-D-12-00498.1.

    • Search Google Scholar
    • Export Citation
  • Coumou, D., A. Robinson, and S. Rahmstorf, 2013: Global increase in record-breaking monthly-mean temperatures. Climatic Change, 118, 771782, doi:10.1007/s10584-012-0668-1.

    • Search Google Scholar
    • Export Citation
  • Davies, H., C. Schär, and H. Wernli, 1991: The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci., 48, 16661689, doi:10.1175/1520-0469(1991)048<1666:TPOFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Vries, H., R. J. Haarsma, and W. Hazeleger, 2012: Western European cold spells in current and future climate. Geophys. Res. Lett., 39, L04706, doi:10.1029/2011GL050665.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, doi:10.1029/2012GL052459.

    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., and S.-W. Son, 2013: Northern Hemisphere blocking frequency and duration in the CMIP5 models. J. Geophys. Res. Atmos., 118, 11791188, doi:10.1002/jgrd.50143.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, doi:10.1126/science.289.5487.2068.

    • Search Google Scholar
    • Export Citation
  • Field, C., and Coauthors, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp.

  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Frisch, U., and D. Sornette, 1997: Extreme deviations and applications. J. Phys. I, 7, 11551171.

  • Garfinkel, C. I., and D. W. Waugh, 2014: Tropospheric Rossby wave breaking and variability of the latitude of the eddy-driven jets. J. Climate, 27, 70697085, doi:10.1175/JCLI-D-14-00081.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and E. P. Gerber, 2013: The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 20772095, doi:10.1175/JCLI-D-12-00301.1.

    • Search Google Scholar
    • Export Citation
  • Grumm, R., J. M. Arnott, and J. Halblaub, 2014: The epic eastern North American warm episode of March 2012. J. Oper. Meteor., 2, doi:10.15191/nwajom.2014.0204.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, doi:10.1073/pnas.1205276109.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., 2014: Extreme upper level cyclonic vorticity events in relation to the Southern Hemisphere jet stream. Geophys. Res. Lett., 41, 43734380, doi:10.1002/2014GL060009.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., C. I. Garfinkel, and O. Lachmy, 2016: The influence of jet regimes on extreme weather events. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. Li et al., Eds., Cambridge University Press, 79–95.

  • Hassanzadeh, P., Z. Kuang, and B. F. Farrell, 2014: Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM. Geophys. Res. Lett., 41, 52235232, doi:10.1002/2014GL060764.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows—Cold and warm fronts. J. Atmos. Sci., 36, 16631680, doi:10.1175/1520-0469(1979)036<1663:BWAFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huntingford, C., P. D. Jones, V. N. Livina, T. M. Lenton, and P. M. Cox, 2013: No increase in global temperature variability despite changing regional patterns. Nature, 500, 327330, doi:10.1038/nature12310.

    • Search Google Scholar
    • Export Citation
  • Joung, C. H., and M. H. Hitchman, 1982: On the role of successive downstream development in East Asian polar air outbreaks. Mon. Wea. Rev., 110, 12241237, doi:10.1175/1520-0493(1982)110<1224:OTROSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and T. Mukano, 2009: Changes in daily and monthly surface air temperature variability by multi-model global warming experiments. J. Meteor. Soc. Japan, 87, 513524, doi:10.2151/jmsj.87.513.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., and S. J. Colucci, 1989: An examination of extreme cold air outbreaks over eastern North America. Mon. Wea. Rev., 117, 26872700, doi:10.1175/1520-0493(1989)117<2687:AEOECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, M., T. Woollings, K. Hodges, and G. Masato, 2014: Extratropical cyclones in a warmer, moister climate: A recent Atlantic analogue. Geophys. Res. Lett., 41, 85948601, doi:10.1002/2014GL062186.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., 1981: Weather and circulation of November 1980: A late heat wave and hurricane and early snow. Mon. Wea. Rev., 109, 396402, doi:10.1175/1520-0493(1981)109<0396:WACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, doi:10.1175/JCLI-D-11-00709.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and J. D. Neelin, 2015: Short-tailed temperature distributions over North America and implications for future changes in extremes. Geophys. Res. Lett., 42, 85778585, doi:10.1002/2015GL065602.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and Coauthors, 2015: Surface temperature probability distributions in the NARCCAP hindcast experiment: Evaluation methodology, metrics, and results. J. Climate, 28, 978997, doi:10.1175/JCLI-D-13-00457.1.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., O. Martius, C. Chevalier, and D. Ginsbourger, 2012: Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett., 39, L22805, doi:10.1029/2012GL053993.

    • Search Google Scholar
    • Export Citation
  • Masato, G., B. Hoskins, and T. J. Woollings, 2012: Wave-breaking characteristics of midlatitude blocking. Quart. J. Roy. Meteor. Soc., 138, 12851296, doi:10.1002/qj.990.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., B. R. Lintner, B. Tian, Q. Li, L. Zhang, P. K. Patra, M. T. Chahine, and S. N. Stechmann, 2010: Long tails in deep columns of natural and anthropogenic tropospheric tracers. Geophys. Res. Lett., 37, L05804, doi:10.1029/2009GL041726.

    • Search Google Scholar
    • Export Citation
  • Newman, W. I., B. D. Malamud, and D. L. Turcotte, 2010: Statistical properties of record-breaking temperatures. Phys. Rev. E, 82, 066111, doi:10.1103/PhysRevE.82.066111.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., 2015: A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164–165, 242267, doi:10.1016/j.atmosres.2015.05.014.

    • Search Google Scholar
    • Export Citation
  • Perron, M., and P. Sura, 2013: Climatology of non-Gaussian atmospheric statistics. J. Climate, 26, 10631083, doi:10.1175/JCLI-D-11-00504.1.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 2013: Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. Bull. Amer. Meteor. Soc., 94, 821834, doi:10.1175/BAMS-D-12-00066.1.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., A. V. Eliseev, R. Klein, and H. Oesterle, 2008: On statistics of the free-troposphere synoptic component: An evaluation of skewnesses and mixed third-order moments contribution to the synoptic-scale dynamics and fluxes of heat and humidity. Tellus, 60A, 1131, doi:10.1111/j.1600-0870.2007.00276.x.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-) daily time scales. Geophys. Res. Lett., 39, L12807, doi:10.1029/2012GL052261.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O. Gorman, and M. S. Singh, 2015: Extratropical cyclones in idealized simulations of changed climates. J. Climate, 28, 93739392, doi:10.1175/JCLI-D-14-00816.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Rhines, A., and P. Huybers, 2013: Frequent summer temperature extremes reflect changes in the mean, not the variance. Proc. Natl. Acad. Sci. USA, 110, E546, doi:10.1073/pnas.1218748110.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ruff, T. W., and J. D. Neelin, 2012: Long tails in regional surface temperature probability distributions with implications for extremes under global warming. Geophys. Res. Lett., 39, L04704, doi:10.1029/2011GL050610.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2015: Need for caution in interpreting extreme weather statistics. J. Climate, 28, 91669187, doi:10.1175/JCLI-D-15-0020.1.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., C. K. Folland, L. V. Alexander, A. Moberg, and J. R. Knight, 2008: European climate extremes and the North Atlantic Oscillation. J. Climate, 21, 7283, doi:10.1175/2007JCLI1631.1.

    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336, doi:10.1038/nature02300.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and H. Płotka, 2015: Physics of changes in synoptic midlatitude temperature variability. J. Climate, 28, 23122331, doi:10.1175/JCLI-D-14-00632.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid-to high-latitudes. Nat. Climate Change, 4, 577582, doi:10.1038/nclimate2268.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964, doi:10.1002/grl.50174.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 14891503, doi:10.1175/BAMS-D-14-00185.1.

    • Search Google Scholar
    • Export Citation
  • Seiler, C., and F. Zwiers, 2016: How will climate change affect explosive cyclones in the extratropics of the Northern Hemisphere? Climate Dyn., 46, 36333644, doi:10.1007/s00382-015-2791-y.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, doi:10.1038/nature05095.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., and M. Croci-Maspoli, 2009: Present and future atmospheric blocking and its impact on European mean and extreme climate. Geophys. Res. Lett., 36, L10702, doi:10.1029/2009GL038259.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., O. Martius, and J. Arnold, 2013: Cold surge episodes over southeastern Brazil—A potential vorticity perspective. Int. J. Climatol., 33, 27582767, doi:10.1002/joc.3618.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Wagner, A. J., 1976: Unprecedented spring heat wave in the Northeast and record drought in the Southeast. Mon. Wea. Rev., 104, 975982, doi:10.1175/1520-0493(1976)104<0975:USHWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., A. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 26422658, doi:10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2015: North Atlantic storm track sensitivity to warming increases with model resolution. J. Climate, 28, 45134524, doi:10.1175/JCLI-D-14-00715.1.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26, 58465862, doi:10.1175/JCLI-D-12-00573.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3 3 0
Full Text Views 1400 715 164
PDF Downloads 730 199 19