• Choi, K.-S., B.-J. Kim, R. Zhang, J.-C. Nam, K.-J. Park, J.-Y. Kim, and D.-W. Kim, 2016: Possible influence of South Asian high on summer rainfall variability in Korea. Climate Dyn., 46, 833846, doi:10.1007/s00382-015-2615-0.

    • Search Google Scholar
    • Export Citation
  • Dai, X., J. Chou, and G. Wu, 2002: The teleconnection relationship between Indian monsoon and East Asian summer circulation (in Chinese). Acta Meteor. Sin., 60, 544552, doi:10.11676/qxxb2002.064.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, doi:10.1175/2011JCLI3621.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Q., 1992: Teleconnection between the floods/droughts in north China and Indian summer monsoon rainfall (in Chinese). Acta Geogr. Sin., 47, 394402.

    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and A. Kulkarni, 2001: Monsoon rainfall variations and teleconnections over South and East Asia. Int. J. Climatol., 21, 603616, doi:10.1002/joc.625.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I. Observational aspects. J. Atmos. Sci., 33, 19371954, doi:10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., S. M. Daggupaty, J. Fein, M. Kanamitsu, and J. D. Lee, 1973: Tibetan high and upper tropospheric tropical circulations during northern summer. Bull. Amer. Meteor. Soc., 54, 12341249.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., H. S. Bedi, and M. Subramaniam, 1989: The summer monsoon of 1987. J. Climate, 2, 321340, doi:10.1175/1520-0442(1989)002<0321:TSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., V. Kumar, M. Sugi, and J. Yoshimura, 2009: Internal feedbacks from monsoon–midlatitude interactions during droughts in the Indian summer monsoon. J. Atmos. Sci., 66, 553578, doi:10.1175/2008JAS2723.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Y. Ding, 2008: Analysis and numerical simulation of the teleconnection between Indian summer monsoon and precipitation in north China (in Chinese). Acta Meteor. Sin., 66, 789799. [Available online at http://www.cmsjournal.net/qxxben/ch/reader/create_pdf.aspx?file_no=20080512&flag=1&journal_id=qxxben&year_id=2008.]

    • Search Google Scholar
    • Export Citation
  • Luo, S., Z. Qian, and Q. Wang, 1982: The climatic and synoptical study about the relation between the Qinghai–Xizang high pressure on the 100 mb surface and the flood and drought in east China in summer (in Chinese). Plateau Meteor., 1 (2), 110. [Available online at http://gyqx.westgis.ac.cn/EN/abstract/abstract5944.shtml.]

    • Search Google Scholar
    • Export Citation
  • Mason, R. B., and C. E. Anderson, 1963: The development and decay of the 100-mb. summertime anticyclone over southern Asia. Mon. Wea. Rev., 91, 312, doi:10.1175/1520-0493(1963)091<0003:TDADOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., K. R. Kumar, and D. R. Kothawale, 1992: Indian summer monsoon rainfall indices: 1871–1990. Meteor. Mag., 121, 174186.

    • Search Google Scholar
    • Export Citation
  • Peixóto, J. P., and A. H. Oort, 1984: Physics of climate. Rev. Mod. Phys., 56, 365429, doi:10.1103/RevModPhys.56.365.

  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis version 6.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. GPCC, accessed 18 July 2014, doi:10.5676/DWD_GPCC/FD_M_V6_050.

  • Sontakke, N. A., G. B. Pant, and N. Singh, 1993: Construction of all-India summer monsoon rainfall series for the period 1844–1991. J. Climate, 6, 18071811, doi:10.1175/1520-0442(1993)006<1807:COAISM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, S., and F. Zhu, 1964: The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the western Pacific subtropical anticyclone over the Far East (in Chinese). Acta Meteor. Sin., 34, 385396.

    • Search Google Scholar
    • Export Citation
  • Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, doi:10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., LinHo, Y. Zhang, and M.-M. Lu, 2004: Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. J. Climate, 17, 699710, doi:10.1175/2932.1.

    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, and M. Wen, 2012: Meridional variation of South Asian high and its relationship with the summer precipitation over China (in Chinese). J. Appl. Meteor. Sci., 23, 650659, doi:10.3969/j.issn.1001-7313.2012.06.002.

    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, X. Rong, and T. Li, 2014: Impact of Indian summer monsoon on the South Asian high and its influence on summer rainfall over China. Climate Dyn., 43, 12571269, doi:10.1007/s00382-013-1938-y.

    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, B.-J. Kim, and J.-C. Nam, 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28, 26232634, doi:10.1175/JCLI-D-14-00454.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int. J. Climatol., 22, 18791895, doi:10.1002/joc.845.

    • Search Google Scholar
    • Export Citation
  • Wu, R., J. L. Kinter, and B. P. Kirtman, 2005: Discrepancy of interdecadal changes in the Asian region among the NCEP–NCAR reanalysis, objective analyses, and observations. J. Climate, 18, 30483067, doi:10.1175/JCLI3465.1.

    • Search Google Scholar
    • Export Citation
  • Xun, X.-Y., and Coauthors, 2011: Comparative analyses of three geopotential height reanalysis data in Qinghai-Xizang Plateau (in Chinese). Plateau Meteor., 30, 14441452. [Available online at http://gyqx.westgis.ac.cn/EN/abstract/abstract3039.shtml#.]

    • Search Google Scholar
    • Export Citation
  • Yang, L.-M., X. Duolaite, and Q.-Y. Zhang, 2009: Relationships between rainfall anomalies in Xinjiang summer and Indian rainfall (in Chinese). Plateau Meteor., 28, 564572. [Available online at http://gyqx.westgis.ac.cn/EN/abstract/abstract2972.shtml.]

    • Search Google Scholar
    • Export Citation
  • Yeh, D., and Y. Gao, 1979: Meteorology of the Tibetan Plateau (in Chinese). Science Publication Agency, 278 pp.

  • Zhang, L., and T. Zhou, 2012: The interannual variability of summer upper-tropospheric temperature over East Asia. J. Climate, 25, 65396553, doi:10.1175/JCLI-D-11-00583.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., G. Wu, and Y. Qian, 2002: The bimodality of the 100 hPa South Asia high and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 80, 733744, doi:10.2151/jmsj.80.733.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 1999: The role of Indian summer monsoon water vapor transportation on the summer rainfall anomalies in the northern part of China during the El Niño mature phase (in Chinese). Plateau Meteor., 18, 567574. [Available online at http://gyqx.westgis.ac.cn/EN/abstract/abstract5015.shtml.]

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2001: Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China. Adv. Atmos. Sci., 18, 10051017.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962. [Available online at https://www.jstage.jst.go.jp/article/jmsj1965/74/1/74_1_49/_article.]

    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, doi:10.1007/BF02973084.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., A. Huang, Y. Zhou, D. Huang, Q. Yang, Y. Ma, M. Li, and G. Wei, 2014a: Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China. J. Climate, 27, 47214732, doi:10.1175/JCLI-D-13-00456.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., M. Wang, A. Huang, H. Li, W. Huo, and Q. Yang, 2014b: Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang. Theor. Appl. Climatol., 116, 403411, doi:10.1007/s00704-013-0948-3.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., and R. Zhang, 2009: Comparison of NCEP/NCAR reanalysis data and radiosonde data about temperature and geopotential height of upper air over the Tibetan Plateau (in Chinese). Climatic Environ. Res., 14, 284292. [Available online at http://oversea.cnki.net/kcms/detail/detail.aspx?dbCode=cjfd&QueryID=13&CurRec=5&filename=QHYH200903007&dbname=CJFD2009.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1247 630 38
PDF Downloads 1186 633 32

Relationship between the Asian Westerly Jet Stream and Summer Rainfall over Central Asia and North China: Roles of the Indian Monsoon and the South Asian High

View More View Less
  • 1 School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China
  • | 2 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
  • | 3 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 4 School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China
Restricted access

Abstract

Diagnostic analyses are performed to investigate the relationship between the upper-level Asian westerly jet stream (AWJS) and the associated rainfall pattern over the AWJS region in boreal summer on interannual time scales. Results show an out-of-phase rainfall variation over central Asia (CA) and north China (NC), which is closely related to the southeast–northwest (SE–NW) shift of the AWJS. The physical mechanisms on the relationship between the AWJS and the rainfall pattern are revealed by exploring the effects of the Indian summer monsoon (ISM) and the South Asian high (SAH). It is found that the SE–NW shifts of the AWJS and SAH associated with the ISM lead to the anomalous circulations over the midlatitudes in the AWJS region and cause rainfall anomalies over CA and NC. A weak ISM results in a southeastward shift of SAH, which is responsible for a southeastward shift of the AWJS. The anomalous atmospheric circulation associated with the southeastward located SAH produces anomalous updrafts (downdrafts) over the western (eastern) AWJS region, resulting in increased rainfall over CA and decreased rainfall over NC. It is proposed that the upper-level system SAH plays a crucial role in the teleconnection among the summer rainfall over the midlatitude AWJS region and ISM region.

Corresponding author e-mail: Renhe Zhang, renhe@camscma.cn

Abstract

Diagnostic analyses are performed to investigate the relationship between the upper-level Asian westerly jet stream (AWJS) and the associated rainfall pattern over the AWJS region in boreal summer on interannual time scales. Results show an out-of-phase rainfall variation over central Asia (CA) and north China (NC), which is closely related to the southeast–northwest (SE–NW) shift of the AWJS. The physical mechanisms on the relationship between the AWJS and the rainfall pattern are revealed by exploring the effects of the Indian summer monsoon (ISM) and the South Asian high (SAH). It is found that the SE–NW shifts of the AWJS and SAH associated with the ISM lead to the anomalous circulations over the midlatitudes in the AWJS region and cause rainfall anomalies over CA and NC. A weak ISM results in a southeastward shift of SAH, which is responsible for a southeastward shift of the AWJS. The anomalous atmospheric circulation associated with the southeastward located SAH produces anomalous updrafts (downdrafts) over the western (eastern) AWJS region, resulting in increased rainfall over CA and decreased rainfall over NC. It is proposed that the upper-level system SAH plays a crucial role in the teleconnection among the summer rainfall over the midlatitude AWJS region and ISM region.

Corresponding author e-mail: Renhe Zhang, renhe@camscma.cn
Save