Wind-Driven Atlantic Water Flow as a Direct Mode for Reduced Barents Sea Ice Cover

Vidar S. Lien Institute of Marine Research, Bergen, Norway

Search for other papers by Vidar S. Lien in
Current site
Google Scholar
PubMed
Close
,
Pawel Schlichtholz Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland

Search for other papers by Pawel Schlichtholz in
Current site
Google Scholar
PubMed
Close
,
Øystein Skagseth Institute of Marine Research, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Øystein Skagseth in
Current site
Google Scholar
PubMed
Close
, and
Frode B. Vikebø Institute of Marine Research, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Frode B. Vikebø in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Variability in the Barents Sea ice cover on interannual and longer time scales has previously been shown to be governed by oceanic heat transport. Based on analysis of observations and results from an ocean circulation model during an event of reduced sea ice cover in the northeastern Barents Sea in winter 1993, it is shown that the ocean also plays a direct role within seasons. Positive wind stress curl and associated Ekman divergence causes a coherent increase in the Atlantic water transport along the negative thermal gradient through the Barents Sea. The immediate response connected to the associated local winds in the northeastern Barents Sea is a decrease in the sea ice cover due to advection. Despite a subsequent anomalous ocean-to-air heat loss on the order of 100 W m−2 due to the open water, the increase in the ocean heat content caused by the circulation anomaly reduced refreezing on a time scale of order one month. Furthermore, it is found that coherent ocean heat transport anomalies occurred more frequently in the latter part of the last five decades during periods of positive North Atlantic Oscillation index, coinciding with the Barents Sea winter sea ice cover decline from the 1990s and onward.

Denotes Open Access content.

Corresponding author e-mail: Vidar S. Lien, vidar.lien@imr.no

Abstract

Variability in the Barents Sea ice cover on interannual and longer time scales has previously been shown to be governed by oceanic heat transport. Based on analysis of observations and results from an ocean circulation model during an event of reduced sea ice cover in the northeastern Barents Sea in winter 1993, it is shown that the ocean also plays a direct role within seasons. Positive wind stress curl and associated Ekman divergence causes a coherent increase in the Atlantic water transport along the negative thermal gradient through the Barents Sea. The immediate response connected to the associated local winds in the northeastern Barents Sea is a decrease in the sea ice cover due to advection. Despite a subsequent anomalous ocean-to-air heat loss on the order of 100 W m−2 due to the open water, the increase in the ocean heat content caused by the circulation anomaly reduced refreezing on a time scale of order one month. Furthermore, it is found that coherent ocean heat transport anomalies occurred more frequently in the latter part of the last five decades during periods of positive North Atlantic Oscillation index, coinciding with the Barents Sea winter sea ice cover decline from the 1990s and onward.

Denotes Open Access content.

Corresponding author e-mail: Vidar S. Lien, vidar.lien@imr.no
Save
  • Aagaard, K., and P. Greisman, 1975: Toward new mass and heat budgets for the Arctic Ocean. J. Geophys. Res., 80, 38213827, doi:10.1029/JC080i027p03821.

    • Search Google Scholar
    • Export Citation
  • ACIA, 2005: Arctic Climate Impact Assessment. Cambridge University Press, 1042 pp.

  • Ådlandsvik, B., and H. Loeng, 1991: A study of the climatic system in the Barents Sea. Polar Res., 10, 4549, doi:10.1111/j.1751-8369.1991.tb00633.x.

    • Search Google Scholar
    • Export Citation
  • Årthun, M., and T. Eldevik, 2016: On anomalous ocean heat transport toward the Arctic and associated climate predictability. J. Climate, 29, 689704, doi:10.1175/JCLI-D-15-0448.1.

    • Search Google Scholar
    • Export Citation
  • Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R. B. Ingvaldsen, 2012: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J. Climate, 25, 47364743, doi:10.1175/JCLI-D-11-00466.1.

    • Search Google Scholar
    • Export Citation
  • Bader, J., M. D. S. Mesquita, K. I. Hodges, N. Keenlyside, S. Østerhus, and M. Miles, 2011: A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmos. Res., 101, 809834, doi:10.1016/j.atmosres.2011.04.007.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., V. A. Semenov, and O. M. Johannessen, 2004: The early twentieth-century warming in the Arctic—A possible mechanism. J. Climate, 17, 40454057, doi:10.1175/1520-0442(2004)017<4045:TETWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Budgell, W. P., 2005: Numerical simulation of ice–ocean variability in the Barents Sea region: Towards dynamical downscaling. Ocean Dyn., 55, 370387, doi:10.1007/s10236-005-0008-3.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. S. Giese, 2000: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309, doi:10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D., C. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data. National Snow and Ice Data Center, accessed June 2015. [Available online at www.nsidc.org/data/NSIDC-0051.]

  • Chafik, L., J. Nilsson, Ø. Skagseth, and P. Lundberg, 2015: On the flow of Atlantic water and temperature anomalies in the Nordic seas toward the Arctic Ocean. J. Geophys. Res., 120, 78977918, doi:10.1002/2015JC011012.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, doi:10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2012: Large decadal decline of the Arctic multiyear ice cover. J. Climate, 25, 11761193, doi:10.1175/JCLI-D-11-00113.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 6, 141164.

  • Fossheim, M., R. Primicerio, E. Johannesen, R. B. Ingvaldsen, M. M. Aschan, and A. V. Dolgov, 2015: Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Climate Change, 5, 673677, doi:10.1038/nclimate2647.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, and P. Cauchy, 2014: Observed atmospheric response to cold season sea ice variability in the Arctic. J. Climate, 27, 12431254, doi:10.1175/JCLI-D-13-00189.1.

    • Search Google Scholar
    • Export Citation
  • Furevik, T., 2000: On anomalous sea surface temperatures in the Nordic seas. J. Climate, 13, 10441053, doi:10.1175/1520-0442(2000)013<1044:OASSTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Furevik, T., 2001: Annual and interannual variability of Atlantic Water temperatures in the Norwegian and Barents Seas: 1980–1996. Deep-Sea Res. I, 48, 383404, doi:10.1016/S0967-0637(00)00050-9.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and E. H. Schumann, 1974: The generation of long shelf waves by the wind. J. Phys. Oceanogr., 4, 8390, doi:10.1175/1520-0485(1974)004<0083:TGOLSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and G. L. Mellor, 1992: Modelling the seasonal variability of a coupled Arctic ice–ocean system. J. Geophys. Res., 97, 20 28520 304, doi:10.1029/92JC02037.

    • Search Google Scholar
    • Export Citation
  • Helland-Hansen, B., and F. Nansen, 1909: The Norwegian Sea: Its Physical Oceanography based upon the Norwegian Research 1900–1904. Part 1, Reports on Norwegian Fishery and Marine Investigations, Det Mallingske Bogtrykkeri, 390 pp.

  • Herbaut, C., M.-N. Houssais, S. Close, and A.-C. Blaizot, 2015: Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep-Sea Res. I, 106, 97115, doi:10.1016/j.dsr.2015.10.005.

    • Search Google Scholar
    • Export Citation
  • Hunke, E., 2001: Viscous–plastic sea ice dynamics with the EVP model: Linearization issues. J. Comput. Phys., 170, 1838, doi:10.1006/jcph.2001.6710.

    • Search Google Scholar
    • Export Citation
  • Hunke, E., and J. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Ikeda, M., 1990: Decadal oscillations of the air–ice–ocean systems in the Northern Hemisphere. Atmos.–Ocean, 28, 106139, doi:10.1080/07055900.1990.9649369.

    • Search Google Scholar
    • Export Citation
  • Ingvaldsen, R., H. Loeng, and L. Asplin, 2002: Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters. Cont. Shelf Res., 22, 505519, doi:10.1016/S0278-4343(01)00070-X.

    • Search Google Scholar
    • Export Citation
  • Ingvaldsen, R., L. Asplin, and H. Loeng, 2004: Velocity field of the western entrance to the Barents Sea. J. Geophys. Res., 109, C03021, doi:10.1029/2003JC001811.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., and Coauthors, 2004: Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus, 56A, 328341, doi:10.1111/j.1600-0870.2004.00060.x.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kimura, N., and M. Wakatsuchi, 2001: Mechanisms for the variation of sea ice extent in the Northern Hemisphere. J. Geophys. Res., 106, 31 31931 331, doi:10.1029/2000JC000739.

    • Search Google Scholar
    • Export Citation
  • Lien, V. S., Y. Gusdal, J. Albretsen, A. Melsom, and F. B. Vikebø, 2013a: Evaluation of a Nordic seas 4 km Numerical Ocean Model Hindcast Archive (SVIM), 1961–2011. Fisken og Havet 7, Havforskningsinstituttet, 79 pp.

  • Lien, V. S., F. B. Vikebø, and Ø. Skagseth, 2013b: One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nat. Commun., 4, 1488, doi:10.1038/ncomms2505.

    • Search Google Scholar
    • Export Citation
  • Lien, V. S., Y. Gusdal, and F. B. Vikebø, 2014: Along-shelf hydrographic anomalies in the Nordic seas (1960–2011): Locally generated or advective signals? Ocean Dyn., 64, 10471059, doi:10.1007/s10236-014-0736-3.

    • Search Google Scholar
    • Export Citation
  • Lien, V. S., and Coauthors, 2016: An assessment of the added value from data assimilation on modelled Nordic seas hydrography and ocean transports. Ocean Modell., 99, 4359, doi:10.1016/j.ocemod.2015.12.010.

    • Search Google Scholar
    • Export Citation
  • Lind, S., and R. B. Ingvaldsen, 2012: Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep-Sea Res. I, 62, 7088, doi:10.1016/j.dsr.2011.12.007.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and L. Kantha, 1989: An ice–ocean coupled model. J. Geophys. Res., 94, 10 93710 954, doi:10.1029/JC094iC08p10937.

  • Mellor, G. L., M. G. McPhee, and M. Steele, 1986: Ice seawater turbulent boundary layer interaction with melting or freezing. J. Phys. Oceanogr., 16, 18291846, doi:10.1175/1520-0485(1986)016<1829:ISTBLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, doi:10.1038/ngeo2277.

    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., K. Sato, and J. Inoue, 2014: Predictability of the Barents Sea ice in early winter: Remote effects of oceanic and atmospheric thermal conditions from the North Atlantic. J. Climate, 27, 88848901, doi:10.1175/JCLI-D-14-00125.1.

    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., T. Eldevik, M. Årthun, R. B. Ingvaldsen, and L. H. Smedsrud, 2015: Skillful prediction of Barents Sea ice cover. Geophys. Res. Lett., 42, 53645371, doi:10.1002/2015GL064359.

    • Search Google Scholar
    • Export Citation
  • Ozhigin, V., R. B. Ingvaldsen, H. Loeng, V. Boitsov, and A. Karsakov, 2011: Introduction to the Barents Sea. The Barents Sea: Ecosystem, Resources, Management: Half a Century of Russian–Norwegian Cooperation. T. Jakobsen and V. Ozhigin, Eds., Tapir Academic Press, 39–76.

  • Parkinson, C. L., and D. J. Cavalieri, 2012: Arctic sea ice variability and trends, 1979–2010. The Cryosphere Discuss., 6, 871880, doi:10.5194/tcd-6-931-2012.

    • Search Google Scholar
    • Export Citation
  • Pavlova, O., V. Pavlov, and S. Gerland, 2014: The impacts of winds and sea surface temperatures on the Barents Sea ice extent, a statistical approach. J. Mar. Syst., 130, 248255, doi:10.1016/j.jmarsys.2013.02.011.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents–Kara Sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2010: Arctic Ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr., 40, 27432756, doi:10.1175/2010JPO4339.1.

    • Search Google Scholar
    • Export Citation
  • Reistad, M., Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik, and J. R. Bidlot, 2011: A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J. Geophys. Res., 116, C05019, doi:10.1029/2010JC006402.

    • Search Google Scholar
    • Export Citation
  • Sandø, A. B., J. E. Ø. Nilsen, Y. Gao, and K. Lohmann, 2010: Importance of heat transport and local air–sea heat fluxes for Barents Sea climate variability. J. Geophys. Res., 115, C07013, doi:10.1029/2009JC005884.

    • Search Google Scholar
    • Export Citation
  • Sandø, A. B., J. E. Ø. Nilsen, T. Eldevik, and M. Bentsen, 2012: Mechanisms for variable North Atlantic–Nordic seas exchanges. J. Geophys. Res., 117, C12006, doi:10.1029/2012JC008177.

    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2011: Influence of oceanic heat variability on sea ice anomalies in the Nordic seas. Geophys. Res. Lett., 38, L05705, doi:10.1029/2010GL045894.

    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2013: Observational evidence for oceanic forcing of atmospheric variability in the Nordic seas area. J. Climate, 26, 29572975, doi:10.1175/JCLI-D-11-00594.1.

    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2014: Local wintertime tropospheric response to oceanic heat anomalies in the Nordic seas area. J. Climate, 27, 86868706, doi:10.1175/JCLI-D-13-00763.1.

    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2016: Empirical relationships between summertime oceanic heat anomalies in the Nordic seas and large-scale atmospheric circulation in the following winter. Climate Dyn., 47, 17351753, doi:10.1007/s00382-015-2930-5.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: Increasing fall–winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, doi:10.1029/2010GL044136.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, doi:10.1175/JCLI-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. C. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, doi:10.1126/science.1139426.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Ocean Modeling System (ROMS): A split-explicit, free-surface, topography-following coordinates ocean model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Skagseth, Ø., K. Drinkwater, and E. Terrile, 2011: Wind and buoyancy induced transport of the Norwegian Coastal Current in the Barents Sea. J. Geophys. Res., 116, C08007, doi:10.1029/2011JC006996.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., and Coauthors, 2013: The role of the Barents Sea in the climate system. Rev. Geophys., 51, 415449, doi:10.1002/rog.20017.

    • Search Google Scholar
    • Export Citation
  • Sorokina, S. A., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: Observed atmospheric coupling between Barents Sea ice and the warm-Arctic cold-Siberian anomaly pattern. J. Climate, 29, 495511, doi:10.1175/JCLI-D-15-0046.1.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 47724784, doi:10.1175/JCLI3885.1.

    • Search Google Scholar
    • Export Citation
  • Sundby, S., and K. Drinkwater, 2007: On the mechanisms behind salinity anomaly signals of the northern North Atlantic. Prog. Oceanogr., 73, 190202, doi:10.1016/j.pocean.2007.02.002.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61, 235265, doi:10.1357/002224003322005087.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., H. Burchard, and K. Hutter, 2003: Extending the kω turbulence model towards oceanic applications. Ocean Modell., 5, 195218, doi:10.1016/S1463-5003(02)00039-2.

    • Search Google Scholar
    • Export Citation
  • Varpe, Ø., M. Daase, and T. Kristiansen, 2015: A fish-eye view on the new Arctic lightscape. ICES J. Mar. Sci., 72, 25322538, doi:10.1093/icesjms/fsv129.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, doi:10.1007/s10712-014-9284-0.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., and W. R. Geyer, 2005: Numerical modelling of an estuary: A comprehensive skill assessment. J. Geophys. Res., 110, C055001, doi:10.1029/2004JC002691.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure methods implemented using a generic length scale method. Ocean Modell., 8, 81113, doi:10.1016/j.ocemod.2003.12.003.

    • Search Google Scholar
    • Export Citation
  • Yang, X.-Y., X. Yuan, and M. Ting, 2016: Dynamical link between the Barents–Kara Sea ice and the Arctic Oscillation. J. Climate, 29, 51035122, doi:10.1175/JCLI-D-15-0669.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1452 593 124
PDF Downloads 776 139 15