Improvements in Global Climate Model Microphysics Using a Consistent Representation of Ice Particle Properties

Trude Eidhammer National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Trude Eidhammer in
Current site
Google Scholar
PubMed
Close
,
Hugh Morrison National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
,
David Mitchell Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada

Search for other papers by David Mitchell in
Current site
Google Scholar
PubMed
Close
,
Andrew Gettelman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew Gettelman in
Current site
Google Scholar
PubMed
Close
, and
Ehsan Erfani Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada

Search for other papers by Ehsan Erfani in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper describes a new approach for representing ice microphysics in climate models. In contrast with most previous schemes, this approach does not include separate categories for cloud and precipitating ice and instead uses a single two-moment category to represent all solid hydrometeors. Thus, there is no need for an ice “autoconversion” size threshold parameter, which has a critical impact on simulated climate in the Community Atmosphere Model (CAM5) yet is poorly constrained by theory or observations. Further, in the new treatment, all ice microphysical processes and parameters, including ice effective radius and mean fall speed, are formulated self-consistently and flexibly based on empirical ice particle mass–size and projected area–size relationships. This means that the scheme can represent the physical coupling between bulk particle density, mean fall speed, and effective radius, which is not possible in current schemes. Two different methods for specifying these relationships based on observations are proposed. The new scheme is tested in global simulations using CAM5. Differences in simulations using the two methods for specifying the mass– and projected area–size relationships, particularly the cloud radiative forcing, are attributable mainly to the effects on mean ice particle fall speed, impacting sedimentation and ice water path. With some tuning of parameters involved in calculating homogeneous freezing it produces a similar climate compared to the simulations using the original CAM5 microphysics. Thus, it can produce a comparable climate while improving the physical basis and self-consistency of ice particle properties and parameters.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Trude Eidhammer, NCAR, P.O. Box 3000, Boulder, CO 80503. E-mail: trude@ucar.edu

Abstract

This paper describes a new approach for representing ice microphysics in climate models. In contrast with most previous schemes, this approach does not include separate categories for cloud and precipitating ice and instead uses a single two-moment category to represent all solid hydrometeors. Thus, there is no need for an ice “autoconversion” size threshold parameter, which has a critical impact on simulated climate in the Community Atmosphere Model (CAM5) yet is poorly constrained by theory or observations. Further, in the new treatment, all ice microphysical processes and parameters, including ice effective radius and mean fall speed, are formulated self-consistently and flexibly based on empirical ice particle mass–size and projected area–size relationships. This means that the scheme can represent the physical coupling between bulk particle density, mean fall speed, and effective radius, which is not possible in current schemes. Two different methods for specifying these relationships based on observations are proposed. The new scheme is tested in global simulations using CAM5. Differences in simulations using the two methods for specifying the mass– and projected area–size relationships, particularly the cloud radiative forcing, are attributable mainly to the effects on mean ice particle fall speed, impacting sedimentation and ice water path. With some tuning of parameters involved in calculating homogeneous freezing it produces a similar climate compared to the simulations using the original CAM5 microphysics. Thus, it can produce a comparable climate while improving the physical basis and self-consistency of ice particle properties and parameters.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Trude Eidhammer, NCAR, P.O. Box 3000, Boulder, CO 80503. E-mail: trude@ucar.edu
Save
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, X., P. Minnis, G. G. Mace, W. L. Smith, M. Poellot, R. T. Marchand, and A. D. Rapp, 2002: Comparison of stratus cloud properties deduced from surface, GOES, and aircraft data during the March 2000 ARM Cloud IOP. J. Atmos. Sci., 59, 32653284, doi:10.1175/1520-0469(2002)059<3265:COSCPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., H. Morrison, A. Bansemer, A. Gettelman, and A. J. Heymsfield, 2014: Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in-situ observations. Atmos. Chem. Phys., 14, 10 10310 118, doi:10.5194/acp-14-10103-2014.

    • Search Google Scholar
    • Export Citation
  • Erfani, E., and D. L. Mitchell, 2016: Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing. Atmos. Chem. Phys., 16, 43794400, doi:10.5194/acp-16-4379-2016.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9, 489529, doi:10.1175/1520-0442(1996)009<0489:LAICMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, doi:10.1175/JCLI-D-14-00102.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., X. Liu, D. Barahona, U. Lohmann, and C.-C. Chen, 2012: Climate impacts of ice nucleation. J. Geophys. Res., 117, D20201, doi:10.1029/2012JD017950.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, S. Santos, P. Bogenschutz, and P. M. Caldwell, 2015: Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol–cloud interactions. J. Climate, 28, 12881307, doi:10.1175/JCLI-D-14-00103.1.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and R. C. Easter, 1992: Computationally efficient approximations to stratiform cloud microphysics parameterization. Mon. Wea. Rev., 120, 15721582, doi:10.1175/1520-0493(1992)120<1572:CEATSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., L. R. Leung, and R. C. Easter, 1997: Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102, 21 77721 794, doi:10.1029/97JD01810.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., and H. R. Pruppacher, 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 19952006, doi:10.1175/1520-0469(1976)033<1995:TSOIPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, doi:10.1175/JAS-D-12-040.1.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, doi:10.1175/JAS-D-12-0152.1.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 22102237, doi:10.1175/JAS3963.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1982: A comparative study of the rates of development of potential graupel and hail embryos in High Plains storms. J. Atmos. Sci., 39, 28672897, doi:10.1175/1520-0469(1982)039<2867:ACSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2003: Properties of tropical and midlatitude ice cloud particle ensembles. Part II: Applications for mesoscale and climate models. J. Atmos. Sci., 60, 25922611, doi:10.1175/1520-0469(2003)060<2592:POTAMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, doi:10.1175/2010JAS3379.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 35053522, doi:10.5194/acp-9-3505-2009.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and A. Gettelman, 2014: Impact of Antarctic mixed-phase clouds on climate. Proc. Natl. Acad. Sci. USA, 111, 18 15618 161, doi:10.1073/pnas.1418197111.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499514, doi:10.1127/0941-2948/2005/0059.

    • Search Google Scholar
    • Export Citation
  • Liu, X., J. E. Penner, S. J. Ghan, and M. Wang, 2007: Inclusion of ice microphysics in the NCAR Community Atmosphere Model version 3 (CAM3). J. Climate, 20, 45264547, doi:10.1175/JCLI4264.1.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM4 general circulation model. Climate Dyn., 12, 557572, doi:10.1007/BF00207939.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., J. Feichter, C. C. Chuang, and J. Penner, 1999: Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res., 104, 91699198, doi:10.1029/1999JD900046.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2002: Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes. Quart. J. Roy. Meteor. Soc., 128, 229257, doi:10.1256/00359000260498879.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2012: Tuning the climate of a global model. J. Adv. Model. Earth Syst., 4, M00A01, doi:10.1029/2012MS000154.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., A. Glazer, and D. Jacob, 2012: Predicting the snow-to-liquid ratio of surface precipitation using a bulk microphysics scheme. Mon. Wea. Rev., 140, 24612476, doi:10.1175/MWR-D-11-00286.1.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, L. J. Donner, V. T. J. Phillips, S. A. Klein, P. A. Ginoux, and L. W. Horowitz, 2007: Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model. J. Atmos. Sci., 64, 11891209, doi:10.1175/JAS3874.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1988: Evolution of snow-size spectra in cyclonic storms. Part I: Snow growth by vapor deposition and aggregation. J. Atmos. Sci., 45, 34313451, doi:10.1175/1520-0469(1988)045<3431:EOSSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644, doi:10.1175/JAS3413.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., A. Macke, and Y. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53, 29672988, doi:10.1175/1520-0469(1996)053<2967:MCCPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., P. Rasch, D. Ivanova, G. McFarquhar, and T. Nousiainen, 2008: The impact of small ice crystal assumptions on sedimentation rates and GCM simulations. Geophys. Res. Lett., 35, L09806, doi:10.1029/2008GL033552.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., S. Mishra, and R. P. Lawson, 2011: Representing the ice fall speed in climate models: Results from Tropical Composition, Cloud and Climate Coupling (TC4) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC). J. Geophys. Res., 116, D00T03, doi:10.1029/2010JD015433.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 15281548, doi:10.1175/2007JAS2491.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, doi:10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 289 pp.

  • Posselt, R., and U. Lohmann, 2008: Introduction of prognostic rain in ECHAM5: Design and single column model simulations. Atmos. Chem. Phys., 8, 29492963, doi:10.5194/acp-8-2949-2008.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation: Second Revised and Enlarged Edition with an Introduction to Cloud Chemistry and Cloud Electricity. Kluwer Academic Publishers, 954 pp.

  • Rasch, P. J., and J. E. Kristjansson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11, 15871614, doi:10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev., 128, 10701088, doi:10.1175/1520-0493(2000)128<1070:ASFCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shi, X., X. Liu, and K. Zhang, 2015: Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5). Atmos. Chem. Phys., 15, 15031520, doi:10.5194/acp-15-1503-2015.

    • Search Google Scholar
    • Export Citation
  • Sulia, K., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts of phase partitioning in parcel models. J. Geophys. Res., 116, D21309, doi:10.1029/2011JD016298.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and Coauthors, 2010: Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2014: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geosci. Model Dev., 7, 361386, doi:10.5194/gmd-7-361-2014.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636, doi:10.1002/qj.49712555707.

    • Search Google Scholar
    • Export Citation
  • Wu, D., and Coauthors, 2009: Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets. J. Geophys. Res., 114, D00A24, doi:10.1029/2008JD009946.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., X. Liu, M. Wang, J. M. Comstock, D. L. Mitchell, S. Mishra, and G. G. Mace, 2013: Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign. Atmos. Chem. Phys., 13, 49634982, doi:10.5194/acp-13-4963-2013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1715 796 60
PDF Downloads 566 141 14