The Uncertainty in the Transient Climate Response to Cumulative CO2 Emissions Arising from the Uncertainty in Physical Climate Parameters

Andrew H. MacDougall Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Andrew H. MacDougall in
Current site
Google Scholar
PubMed
Close
,
Neil C. Swart Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada

Search for other papers by Neil C. Swart in
Current site
Google Scholar
PubMed
Close
, and
Reto Knutti Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Reto Knutti in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

An emergent property of most Earth system models is a near-linear relationship between cumulative emission of CO2 and change in global near-surface temperature. This relationship, which has been named the transient climate response to cumulative CO2 emissions (TCRE), implies a finite budget of fossil fuel carbon that can be burnt over all time consistent with a chosen temperature change target. Carbon budgets are inversely proportional to the value of TCRE and are therefore sensitive to the uncertainty in TCRE. Here the authors have used a perturbed physics approach with an Earth system model of intermediate complexity to assess the uncertainty in the TCRE that arises from uncertainty in the rate of transient temperature change and the effect of this uncertainty on carbon cycle feedbacks. The experiments are conducted using an idealized 1% yr−1 increase in CO2 concentration. Additionally, the authors have emulated the temperature output of 23 models from phase 5 of the Climate Model Intercomparison Project (CMIP5). The experiment yields a mean value for TCRE of 1.72 K EgC−1 with a 5th to 95th percentile range of 0.88 to 2.52 K EgC−1. This range of uncertainty is consistent with the likely range from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (0.8 to 2.5 K EgC−1) but by construction underestimates the total uncertainty range of TCRE, as the authors’ experiments cannot account for the uncertainty from their models’ imperfect representation of the global carbon cycle. Transient temperature change uncertainty induces a 5th to 95th percentile range in the airborne fraction at the time of doubled atmospheric CO2 of 0.50 to 0.58. Overall the uncertainty in the value of TCRE remains considerable.

Denotes Open Access content.

Current affiliation: Department of Earth Sciences, St. Francis Xavier University, Antigonish, Nova Scotia, Canada.

Corresponding author e-mail: Andrew H. MacDougall, amacdoug@stfx.ca

Abstract

An emergent property of most Earth system models is a near-linear relationship between cumulative emission of CO2 and change in global near-surface temperature. This relationship, which has been named the transient climate response to cumulative CO2 emissions (TCRE), implies a finite budget of fossil fuel carbon that can be burnt over all time consistent with a chosen temperature change target. Carbon budgets are inversely proportional to the value of TCRE and are therefore sensitive to the uncertainty in TCRE. Here the authors have used a perturbed physics approach with an Earth system model of intermediate complexity to assess the uncertainty in the TCRE that arises from uncertainty in the rate of transient temperature change and the effect of this uncertainty on carbon cycle feedbacks. The experiments are conducted using an idealized 1% yr−1 increase in CO2 concentration. Additionally, the authors have emulated the temperature output of 23 models from phase 5 of the Climate Model Intercomparison Project (CMIP5). The experiment yields a mean value for TCRE of 1.72 K EgC−1 with a 5th to 95th percentile range of 0.88 to 2.52 K EgC−1. This range of uncertainty is consistent with the likely range from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (0.8 to 2.5 K EgC−1) but by construction underestimates the total uncertainty range of TCRE, as the authors’ experiments cannot account for the uncertainty from their models’ imperfect representation of the global carbon cycle. Transient temperature change uncertainty induces a 5th to 95th percentile range in the airborne fraction at the time of doubled atmospheric CO2 of 0.50 to 0.58. Overall the uncertainty in the value of TCRE remains considerable.

Denotes Open Access content.

Current affiliation: Department of Earth Sciences, St. Francis Xavier University, Antigonish, Nova Scotia, Canada.

Corresponding author e-mail: Andrew H. MacDougall, amacdoug@stfx.ca
Save
  • Allen, M. R., D. J. Frame, C. Huntingford, C. D. Jones, J. A. Lowe, M. Meinshausen, and N. Meinshausen, 2009: Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458, 11631166, doi:10.1038/nature08019.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Climate, 26, 52895314, doi:10.1175/JCLI-D-12-00494.1.

    • Search Google Scholar
    • Export Citation
  • Avis, C. A., 2012: Simulating the present-day and future distribution of permafrost in the UVic Earth system climate model. Ph.D. thesis, University of Victoria, 291 pp.

  • Avis, C. A., A. J. Weaver, and K. J. Meissner, 2011: Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nat. Geosci., 4, 444448, doi:10.1038/ngeo1160.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B., and Coauthors, 2012: High sensitivity of future global warming to land carbon cycle processes. Environ. Res. Lett., 7, 024002, doi:10.1088/1748-9326/7/2/024002.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. Lewis, 1979: A water mass model of the World Ocean. J. Geophys. Res., 84, 25032517, doi:10.1029/JC084iC05p02503.

  • Collins, M., C. Brierley, M. MacVean, B. Booth, and G. Harris, 2007: The sensitivity of the rate of transient climate change to ocean physics perturbations. J. Climate, 20, 23152320, doi:10.1175/JCLI4116.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2001: Modelling vegetation and the carbon cycle as interactive elements of the climate system. Hadley Centre Tech. Note 23, 29 pp. [Available online at http://wikyonos.seos.uvic.ca/model/common/HCTN_23.pdf.]

  • Eby, M., K. Zickfeld, A. Montenegro, D. Archer, K. J. Meissner, and A. J. Weaver, 2009: Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. J. Climate, 22, 25012511, doi:10.1175/2008JCLI2554.1.

    • Search Google Scholar
    • Export Citation
  • Eby, M., and Coauthors, 2013: Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity. Climate Past, 9, 11111140, doi:10.5194/cp-9-1111-2013.

    • Search Google Scholar
    • Export Citation
  • Falkowski, P., and Coauthors, 2000: The global carbon cycle: A test of our knowledge of Earth as a system. Science, 290, 291296, doi:10.1126/science.290.5490.291.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., V. K. Arora, D. Matthews, and M. R. Allen, 2013: Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Climate, 26, 68446858, doi:10.1175/JCLI-D-12-00476.1.

    • Search Google Scholar
    • Export Citation
  • Goodwin, P., R. G. Williams, and A. Ridgwell, 2015: Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nat. Geosci., 8, 2934, doi:10.1038/ngeo2304.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., and P. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105, doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., C. D. Jones, P. Cadule, and P. Friedlingstein, 2009: Quantifying carbon cycle feedbacks. J. Climate, 22, 52325250, doi:10.1175/2009JCLI2949.1.

    • Search Google Scholar
    • Export Citation
  • Hamza, V., R. Cardoso, and C. P. Neto, 2008: Spherical harmonic analysis of Earth’s conductive heat flow. Int. J. Earth Sci., 97, 205226, doi:10.1007/s00531-007-0254-3.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, doi:10.1029/96JD03436.

    • Search Google Scholar
    • Export Citation
  • Helton, J. C., and F. J. Davis, 2003: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf., 81, 2369, doi:10.1016/S0951-8320(03)00058-9.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • Jenkinson, D., D. Adams, and A. Wild, 1991: Model estimates of CO2 emissions from soil in response to global warming. Nature, 351, 304306, doi:10.1038/351304a0.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., 2010: The end of model democracy? Climatic Change, 102, 395404, doi:10.1007/s10584-010-9800-2.

  • Knutti, R., and M. A. Rugenstein, 2015: Feedbacks, climate sensitivity and the limits of linear models. Philos. Trans. Roy. Soc. London, 373A, 20150146, doi:10.1098/rsta.2015.0146.

    • Search Google Scholar
    • Export Citation
  • Krasting, J., J. Dunne, E. Shevliakova, and R. Stouffer, 2014: Trajectory sensitivity of the transient climate response to cumulative carbon emissions. Geophys. Res. Lett., 41, 25202527, doi:10.1002/2013GL059141.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, Eds., 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, U.S. Government Printing Office, 184 pp.

  • Luo, Y., and X. Zhou, 2006: Soil Respiration and the Environment. Academic Press, 316 pp.

  • MacDougall, A. H., 2013: Reversing climate warming by artificial atmospheric carbon-dioxide removal: Can a Holocene-like climate be restored? Geophys. Res. Lett., 40, 54805485, doi:10.1002/2013GL057467.

    • Search Google Scholar
    • Export Citation
  • MacDougall, A. H., 2016: The transient response to cumulative CO2 emissions: A review. Curr. Climate Change Rep., 2, 3947, doi:10.1007/s40641-015-0030-6.

    • Search Google Scholar
    • Export Citation
  • MacDougall, A. H., and P. Friedlingstein, 2015: The origin and limits of the near proportionality between climate warming and cumulative CO2 emissions. J. Climate, 28, 42174230, doi:10.1175/JCLI-D-14-00036.1.

    • Search Google Scholar
    • Export Citation
  • MacDougall, A. H., and R. Knutti, 2016a: Enhancement of non-CO2 radiative forcing via intensified carbon cycle feedbacks. Geophys. Res. Lett., 43, 58335840, doi:10.1002/2016GL068964.

    • Search Google Scholar
    • Export Citation
  • MacDougall, A. H., and R. Knutti, 2016b: Projecting the release of carbon from permafrost soils using a perturbed physics ensemble modelling approach. Biogeosciences, 13, 21232136, doi:10.5194/bg-13-2123-2016.

    • Search Google Scholar
    • Export Citation
  • MacDougall, A. H., C. A. Avis, and A. J. Weaver, 2012: Significant existing commitment to warming from the permafrost carbon feedback. Nat. Geosci., 5, 719721, doi:10.1038/ngeo1573.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., A. J. Weaver, K. J. Meissner, N. P. Gillett, and M. Eby, 2004: Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dyn., 22, 461479, doi:10.1007/s00382-004-0392-2.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., N. P. Gillett, P. A. Stott, and K. Zickfeld, 2009: The proportionality of global warming to cumulative carbon emissions. Nature, 459, 829832, doi:10.1038/nature08047.

    • Search Google Scholar
    • Export Citation
  • McGlade, C., and P. Ekins, 2015: The geographical distribution of fossil fuels unused when limiting global warming to 2°C. Nature, 517, 187190, doi:10.1038/nature14016.

    • Search Google Scholar
    • Export Citation
  • McKay, M. D., R. J. Beckman, and W. J. Conover, 1979: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239245, doi:10.2307/1268522.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., N. Meinshausen, W. Hare, S. C. Raper, K. Frieler, R. Knutti, D. J. Frame, and M. R. Allen, 2009: Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458, 11581162, doi:10.1038/nature08017.

    • Search Google Scholar
    • Export Citation
  • Meissner, K. J., A. J. Weaver, H. D. Matthews, and P. M. Cox, 2003: The role of land surface dynamics in glacial inception: A study with the UVic Earth system model. Climate Dyn., 21, 515537, doi:10.1007/s00382-003-0352-2.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747754, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., E. J. Highwood, K. P. Shine, and F. Stordal, 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25, 27152718, doi:10.1029/98GL01908.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Nohara, D., Y. Yoshida, K. Misumi, and M. Ohba, 2013: Dependency of climate change and carbon cycle on CO2 emission pathways. Environ. Res. Lett., 8, 014047, doi:10.1088/1748-9326/8/1/014047.

    • Search Google Scholar
    • Export Citation
  • Olson, R., R. Sriver, M. Goes, N. M. Urban, H. D. Matthews, M. Haran, and K. Keller, 2012: A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth system model. J. Geophys. Res., 117, D04103, doi:10.1029/2011JD016620.

    • Search Google Scholar
    • Export Citation
  • Orr, J., R. Najjar, C. Sabine, and F. Joos, 1999: Abiotic-how-to. Internal OCMIP Rep., 25 pp.

  • Pacanowski, R., 1995: MOM 2 documentation user’s guide and reference manual. NOAA/GDFL Ocean Group Tech. Rep., 232 pp.

  • Randerson, J. T., K. Lindsay, E. Munoz, W. Fu, J. K. Moore, F. M. Hoffman, N. M. Mahowald, and S. C. Doney, 2015: Multicentury changes in ocean and land contributions to the climate–carbon feedback. Global Biogeochem. Cycles, 29, 744759, doi:10.1002/2014GB005079.

    • Search Google Scholar
    • Export Citation
  • Raper, S. C. B., J. M. Gregory, and R. J. Stouffer, 2002: The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Climate, 15, 124130, doi:10.1175/1520-0442(2002)015<0124:TROCSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., and Coauthors, 2014: Sharing a quota on cumulative carbon emissions. Nat. Climate Change, 4, 873879, doi:10.1038/nclimate2384.

    • Search Google Scholar
    • Export Citation
  • Rogelj, J., M. Meinshausen, M. Schaeffer, R. Knutti, and K. Riahi, 2015: Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming. Environ. Res. Lett., 10, 075001, doi:10.1088/1748-9326/10/7/075001.

    • Search Google Scholar
    • Export Citation
  • Rowlands, D. J., and Coauthors, 2012: Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nat. Geosci., 5, 256260, doi:10.1038/ngeo1430.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., A. Oschlies, H. D. Matthews, and E. D. Galbraith, 2008: Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem. Cycles, 22, GB1013, doi:10.1029/2007GB002953.

    • Search Google Scholar
    • Export Citation
  • Schneider von Deimling, T., G. Grosse, J. Strauss, L. Schirrmeister, A. Morgenstern, S. Schaphoff, M. Meinshausen, and J. Boike, 2015: Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences, 11, 16 59916 643, doi:10.5194/bgd-11-16599-2014.

    • Search Google Scholar
    • Export Citation
  • Schuur, E., and Coauthors, 2015: Climate change and the permafrost carbon feedback. Nature, 520, 171179, doi:10.1038/nature14338.

  • Smith, L., 2007: Chaos: A Very Short Introduction. Oxford University Press, 176 pp.

  • Steinacher, M., and F. Joos, 2016: Transient Earth system responses to cumulative carbon dioxide emissions: Linearities, uncertainties, and probabilities in an observation-constrained model ensemble. Biogeosciences, 13, 10711103, doi:10.5194/bg-13-1071-2016.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Technical summary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 33–115.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, 365A, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Thompson, A., and S. G. Warren, 1982: Parameterization of outgoing infrared radiation derived from detailed radiative calculations. J. Atmos. Sci., 39, 26672680, doi:10.1175/1520-0469(1982)039<2667:POOIRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • United Nations, 2015: Paris Agreement. 21st Conf. of the Parties of the United Nations Framework Convention on Climate Change, Paris, France, United Nations, 1–25. [Available online at http://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf.]

  • Vaughan, D., and Coauthors, 2013: Observations: Cryosphere. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 317–382.

  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, doi:10.1007/s00382-013-1725-9.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic Earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmos.–Ocean, 39, 361428, doi:10.1080/07055900.2001.9649686.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M., and M. E. Schlesinger, 1985: Analytical solution for the effect of increasing CO2 on global mean temperature. Nature, 315, 649652, doi:10.1038/315649a0.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Y. Huang, 2014: Radiative forcing of quadrupling CO2. J. Climate, 27, 24962508, doi:10.1175/JCLI-D-13-00535.1.

  • Zickfeld, K., M. Eby, H. D. Matthews, and A. J. Weaver, 2009: Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl. Acad. Sci. USA, 106, 16 12916 134, doi:10.1073/pnas.0805800106.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1788 757 194
PDF Downloads 829 159 25