Tropical Cyclones Downscaled from Simulations with Very High Carbon Dioxide Levels

Robert L. Korty Texas A&M University, College Station, Texas

Search for other papers by Robert L. Korty in
Current site
Google Scholar
PubMed
Close
,
Kerry A. Emanuel Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Kerry A. Emanuel in
Current site
Google Scholar
PubMed
Close
,
Matthew Huber Purdue University, West Lafayette, Indiana, and University of New Hampshire, Durham, New Hampshire

Search for other papers by Matthew Huber in
Current site
Google Scholar
PubMed
Close
, and
Ryan A. Zamora Texas A&M University, College Station, Texas

Search for other papers by Ryan A. Zamora in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A method to simulate thousands of tropical cyclones using output from a global climate model is applied to simulations that span very high surface temperatures forced with high levels of carbon dioxide (CO2). The climatology of the storms downscaled from a simulation with modern-day conditions is compared to that of events downscaled from two other simulations featuring 8 and 32 times preindustrial-era levels of CO2. Storms shift poleward with warming: genesis locations and track densities increase in subtropical and higher latitudes, and power dissipation increases poleward of 20°S and 30°N. The average latitude at which storms reach their maximum intensity shifts poleward by more than 1.5° latitude in the 8 × CO2 experiment and by more than 7° latitude in the 32 × CO2 case. Storms live longer and are more numerous in both of the warmer climates. These increases come largely from an expansion of the area featuring favorable conditions into subtropics and midlatitudes, with some regions of the Arctic having the thermodynamic conditions necessary to sustain systems in the hottest case. Storms of category 5 intensity are 52% more frequent in the 8 × CO2 experiment but 40% less so in the 32 × CO2 case, largely owing to a substantial decline in low-latitude activity associated with increases in a normalized measure of wind shear called the ventilation index. Changes in genesis and track densities align well with differences in the ventilation index, and environmental conditions become substantially more favorable poleward of about 20° latitude in the warmer climates.

Current affiliation: Johns Hopkins University, Baltimore, Maryland.

Corresponding author e-mail: Robert L. Korty, korty@tamu.edu

Abstract

A method to simulate thousands of tropical cyclones using output from a global climate model is applied to simulations that span very high surface temperatures forced with high levels of carbon dioxide (CO2). The climatology of the storms downscaled from a simulation with modern-day conditions is compared to that of events downscaled from two other simulations featuring 8 and 32 times preindustrial-era levels of CO2. Storms shift poleward with warming: genesis locations and track densities increase in subtropical and higher latitudes, and power dissipation increases poleward of 20°S and 30°N. The average latitude at which storms reach their maximum intensity shifts poleward by more than 1.5° latitude in the 8 × CO2 experiment and by more than 7° latitude in the 32 × CO2 case. Storms live longer and are more numerous in both of the warmer climates. These increases come largely from an expansion of the area featuring favorable conditions into subtropics and midlatitudes, with some regions of the Arctic having the thermodynamic conditions necessary to sustain systems in the hottest case. Storms of category 5 intensity are 52% more frequent in the 8 × CO2 experiment but 40% less so in the 32 × CO2 case, largely owing to a substantial decline in low-latitude activity associated with increases in a normalized measure of wind shear called the ventilation index. Changes in genesis and track densities align well with differences in the ventilation index, and environmental conditions become substantially more favorable poleward of about 20° latitude in the warmer climates.

Current affiliation: Johns Hopkins University, Baltimore, Maryland.

Corresponding author e-mail: Robert L. Korty, korty@tamu.edu
Save
  • Adam, O., T. Schneider, and N. Harnik, 2014: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Climate, 27, 74507461, doi:10.1175/JCLI-D-14-00140.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and M. Huber, 2010: Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett., 37, L11701, doi:10.1029/2010GL043468.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and M. Huber, 2013: State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl. Acad. Sci. USA, 110, 14 16214 167, doi:10.1073/pnas.1303365110.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, doi:10.1175/JCLI-D-12-00549.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. A. Wing, 2016: Tropical cyclones in climate models. Wiley Interdiscip. Rev.: Climate Change, 7, 211237, doi:10.1002/wcc.373.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443, doi:10.1111/j.1600-0870.2007.00238.x.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., F. Zheng, and J. Zhu, 2015: Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep., 5, 14346, doi:10.1038/srep14346.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485, doi:10.1038/326483a0.

  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968, doi:10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802, doi:10.1175/JCLI3908.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2, 1, doi:10.3894/JAMES.2010.2.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, doi:10.1073/pnas.1301293110.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and A. Sobel, 2013: Response of tropical sea surface temperature, precipitation, and tropical cyclone–related variables to changes in global and local forcing. J. Adv. Model. Earth Syst., 5, 447458, doi:10.1002/jame.20032.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., K. Oouchi, M. Satoh, H. Tomita, and Y. Yamada, 2010: Comparison of explicitly simulated and downscaled tropical cyclone activity in a high-resolution global climate model. J. Adv. Model. Earth Syst., 2, 9, doi:10.3894/JAMES.2010.2.9.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., C. M. Brierley, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463, 10661070, doi:10.1038/nature08831.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Holland, G., and C. L. Bruyère, 2014: Recent intense hurricane response to global climate change. Climate Dyn., 42, 617627, doi:10.1007/s00382-013-1713-0.

    • Search Google Scholar
    • Export Citation
  • Horn, M., and Coauthors, 2014: Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations. J. Climate, 27, 91979213, doi:10.1175/JCLI-D-14-00200.1.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., and P. J. Webster, 2012: Evolution and modulation of tropical heating from the last glacial maximum through the twenty-first century. Climate Dyn., 38, 15011519, doi:10.1007/s00382-011-1181-3.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, doi:10.5194/acp-7-5229-2007.

    • Search Google Scholar
    • Export Citation
  • Hudson, R. D., M. F. Andrade, M. B. Follette, and A. D. Frolov, 2006: The total ozone field separated into meteorological regimes—Part II: Northern Hemisphere mid-latitude total ozone trends. Atmos. Chem. Phys., 6, 51835191, doi:10.5194/acp-6-5183-2006.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., and R. Ferrari, 2009: Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys. Res. Lett., 36, L06604, doi:10.1029/2008GL036796.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and K. Emanuel, 2013: Rotating radiative–convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, doi:10.1002/2013MS000253.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini, and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, doi:10.1175/JCLI-D-15-0129.1.

    • Search Google Scholar
    • Export Citation
  • Koh, J. H., and C. M. Brierley, 2015: Tropical cyclone genesis potential across palaeoclimates. Climate Past, 11, 14331451, doi:10.5194/cp-11-1433-2015.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and K. A. Emanuel, 2007: The dynamic response of the winter stratosphere to an equable climate surface temperature gradient. J. Climate, 20, 52135228, doi:10.1175/2007JCLI1556.1.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 59775991, doi:10.1175/2007JCLI1788.1.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone–induced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638654, doi:10.1175/2007JCLI1659.1.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., S. J. Camargo, and J. Galewsky, 2012a: Tropical cyclone genesis factors in simulations of the Last Glacial Maximum. J. Climate, 25, 43484365, doi:10.1175/JCLI-D-11-00517.1.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., S. J. Camargo, and J. Galewsky, 2012b: Variations in tropical cyclone genesis factors in simulations of the Holocene epoch. J. Climate, 25, 81968211, doi:10.1175/JCLI-D-12-00033.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352, doi:10.1038/nature13278.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. J. Climate, 29, 57255739, doi:10.1175/JCLI-D-16-0076.1.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, doi:10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2013: Storm track shifts under climate change: What can be learned from large-scale dry dynamics. J. Climate, 26, 99239930, doi:10.1175/JCLI-D-13-00404.1.

    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2012: Restratification of the upper ocean after the passage of a tropical cyclone: A numerical study. J. Phys. Oceanogr., 42, 13771401, doi:10.1175/JPO-D-11-0209.1.

    • Search Google Scholar
    • Export Citation
  • Mei, W., F. Primeau, J. C. McWilliams, and C. Pasquero, 2013: Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean. Proc. Natl. Acad. Sci. USA, 110, 15 20715 210, doi:10.1073/pnas.1306753110.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, doi:10.1175/JCLI-D-15-0216.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and E. D. Rappin, 2008: Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments. Geophys. Res. Lett., 35, L14805, doi:10.1029/2008GL034147.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, doi:10.1175/2007JCLI2065.1.

    • Search Google Scholar
    • Export Citation
  • Pasquero, C., and K. Emanuel, 2008: Tropical cyclones and transient upper-ocean warming. J. Climate, 21, 149162, doi:10.1175/2007JCLI1550.1.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., D. S. Nolan, and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative–convective equilibrium with shear. Quart. J. Roy. Meteor. Soc., 136, 19541971, doi:10.1002/qj.706.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and W. J. Randel, 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112, D20113, doi:10.1029/2007JD008861.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, doi:10.1073/pnas.0913352107.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, doi:10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. J. Camargo, T. M. Hall, C.-Y. Lee, M. K. Tippett, and A. A. Wing, 2016: Human influence on tropical cyclone intensity. Science, 353, 242246, doi:10.1126/science.aaf6574.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577580, doi:10.1038/nature05785.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., and M. Huber, 2010: Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation. Geophys. Res. Lett., 37, L08704, doi:10.1029/2010GL042836.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., M. Huber, and J. Nusbaumer, 2008: Investigating tropical cyclone-climate feedbacks using the TRMM Microwave Imager and the Quick Scatterometer. Geochem. Geophys. Geosyst., 9, Q09V11, doi:10.1029/2007GC001842.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., M. Huber, and L. Chafik, 2013: Excitation of equatorial Kelvin and Yanai waves by tropical cyclones in an ocean general circulation model. Earth Syst. Dyn., 4, 110, doi:10.5194/esd-4-1-2013.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, doi:10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, D. J., R. Korty, M. Huber, J. A. Schubert, and B. Haines, 2014: Nd isotopic structure of the Pacific Ocean 70–30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world. Paleoceanography, 29, 454469, doi:10.1002/2013PA002535.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 6589, doi:10.1002/wcc.371.

    • Search Google Scholar
    • Export Citation
  • Williams, I. N., R. T. Pierrehumbert, and M. Huber, 2009: Global warming, convective threshold and false thermostats. Geophys. Res. Lett., 36, L21805, doi:10.1029/2009GL039849.

    • Search Google Scholar
    • Export Citation
  • Yan, Q., R. Korty, and Z. Zhang, 2015: Tropical cyclone genesis factors in a simulation of the last two millennia: Results from the Community Earth System Model. J. Climate, 28, 71827202, doi:10.1175/JCLI-D-15-0054.1.

    • Search Google Scholar
    • Export Citation
  • Zamora, R. A., R. L. Korty, and M. Huber, 2016: Thermal stratification in simulations of warm climates: A climatology using saturation potential vorticity. J. Climate, 29, 50835102, doi:10.1175/JCLI-D-15-0785.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1100 423 105
PDF Downloads 564 107 12