• Alexander, M. A., 1990: Simulation of the response of the North Pacific Ocean to the anomalous atmospheric circulation associated with El Niño. Climate Dyn., 5, 5365, doi:10.1007/BF00195853.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122137, doi:10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., N. E. Bond, A. J. Miller, and M. J. DeFlorio, 2016: The evolution and known atmospheric forcing mechanisms behind the 2013–2015 North Pacific warm anomalies. U.S. CLIVAR Variations, No. 14, International CLIVAR Project Office, Southampton, United Kingdom, 1–6.

  • Baxter, S., and S. Nigam, 2015: Key role of North Pacific Oscillation–West Pacific pattern in generating the extreme 2013/14 North American winter. J. Climate, 28, 81098117, doi:10.1175/JCLI-D-14-00726.1.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm.]

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua, 2015a: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 34143420, doi:10.1002/2015GL063306.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, and H. Freeland, 2015b: The blob: An extreme warm anomaly in the northeast Pacific [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc., 96 (7), S62S63.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., G. Liguori, and N. Mantua, 2016: Climate interpretation of the North Pacific marine heatwave of 2013–2015. U.S. CLIVAR Variations, No. 14, International CLIVAR Project Office, Southampton, United Kingdom, 13–18.

  • Hartmann, D., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, doi:10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models, Part 1: Theory. Tellus, 28A, 473485, doi:10.1111/j.2153-3490.1976.tb00696.x.

  • Hoerling, M. P., and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 21842203, doi:10.1175/1520-0442(2002)015<2184:ARPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2006: On the significance of the relationship between the North Atlantic Oscillation in early winter and Atlantic sea surface temperature anomalies. J. Geophys. Res., 111, D12103, doi:10.1029/2005JD006339.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065, doi:10.1175/2009JCLI2798.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, Y. Xue, W. Wang, and B. Jha, 2011: Persistent atmospheric and oceanic anomalies in the North Atlantic from summer 2009 to summer 2010. J. Climate, 24, 58125830, doi:10.1175/2011JCLI4213.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, W. Wang, J. Zhu, and C. Wen, 2013: Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Climate Dyn., 40, 27452756, doi:10.1007/s00382-012-1431-z.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, and Y. Guan, 2014: Prediction skill of North Pacific variability in NCEP Climate Forecast System version 2: Impact of ENSO and beyond. J. Climate, 27, 42634272, doi:10.1175/JCLI-D-13-00633.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., Y. Xue, D. Zhang, A. Kumar, and M. J. McPhaden, 2010: The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23, 49014925, doi:10.1175/2010JCLI3373.1.

    • Search Google Scholar
    • Export Citation
  • Jha, B., A. Kumar, and Z.-Z. Hu, 2016: An update on the estimate of predictability of seasonal mean atmospheric variability using North American Multi-Model Ensemble. Climate Dyn., doi:10.1007/s00382-016-3217-1, in press.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, X. Liu, Z. Zuo, and B. Jha, 2013: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System version 2. J. Climate, 26, 37083727, doi:10.1175/JCLI-D-12-00437.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1995: Prospects and limitations of seasonal atmospheric GCM predictions. Bull. Amer. Meteor. Soc., 76, 335345, doi:10.1175/1520-0477(1995)076<0335:PALOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. Chen, 2015: Inherent predictability, requirements on the ensemble size, and complementarity. Mon. Wea. Rev., 143, 31923203, doi:10.1175/MWR-D-15-0022.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and H. Wang, 2015: On the potential of extratropical SST anomalies for improving climate predictions. Climate Dyn., 44, 25572569, doi:10.1007/s00382-014-2398-8.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, L. Zhang, W. Wang, Y. Xue, C. Wen, L. Marx, and B. Huang, 2012: An analysis of the nonstationarity in the bias of sea surface temperature forecasts for the NCEP Climate Forecast System (CFS) version 2. Mon. Wea. Rev., 140, 30033016, doi:10.1175/MWR-D-11-00335.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., H. Wang, W. Wang, Y. Xue, and Z.-Z. Hu, 2013: Does knowing the oceanic PDO phase help predict the atmospheric anomalies in subsequent months? J. Climate, 26, 12681285, doi:10.1175/JCLI-D-12-00057.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, doi:10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-Y., C.-C. Hong, and H.-H. Hsu, 2015: Compounding effects of warm SST and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett., 42, 16121618, doi:10.1002/2014GL062956.

    • Search Google Scholar
    • Export Citation
  • Namias, J., and R. M. Born, 1970: Temporal coherence in North Pacific sea-surface temperature patterns. J. Geophys. Res., 75, 59525955, doi:10.1029/JC075i030p05952.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, doi:10.1175/JCLI-D-15-0508.1.

  • Peng, P., A. Kumar, and W. Wang, 2011: An analysis of seasonal predictability in coupled model forecasts. Climate Dyn., 36, 637648, doi:10.1007/s00382-009-0711-8.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Schneider, E. K., L. Bengtsson, and Z.-Z. Hu, 2003: Forcing of Northern Hemisphere climate trends. J. Atmos. Sci., 60, 15041521, doi:10.1175/1520-0469(2003)060<1504:FONHCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, doi:10.1175/JCLI-D-14-00860.1.

    • Search Google Scholar
    • Export Citation
  • Watson, P. A. G., A. Weisheimer, J. R. Knight, and T. N. Palmer, 2016: The role of the tropical West Pacific in the extreme Northern Hemisphere winter of 2013/2014. J. Geophys. Res. Atmos., 121, 16981714, doi:10.1002/2015JD024048.

    • Search Google Scholar
    • Export Citation
  • Wen, C., Y. Xue, and A. Kumar, 2012: Seasonal prediction of North Pacific SSTs and PDO in the NCEP CFS hindcasts. J. Climate, 25, 56895710, doi:10.1175/JCLI-D-11-00556.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. Chen, A. Kumar, Z.-Z. Hu, and W. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J. Climate, 26, 53585378, doi:10.1175/JCLI-D-12-00600.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., Z.-Z. Hu, A. Kumar, V. Banzon, T. M. Smith, and N. A. Rayner, 2015: Sea surface temperatures [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc., 96 (7), S59S64.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., Z.-Z. Hu, A. Kumar, V. Banzon, B. Huang, and J. Kennedy, 2016: Sea surface temperatures [in “State of the Climate in 2015”]. Bull. Amer. Meteor. Soc., 97 (8), S63S66.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, L. Marx, J. L. Kinter III, M. A. Balmaseda, R.-H. Zhang, and Z.-Z. Hu, 2012: Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys. Res. Lett., 39, L09602, doi:10.1029/2012GL051503.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 601 346 15
PDF Downloads 400 225 6

Persistence and Predictions of the Remarkable Warm Anomaly in the Northeastern Pacific Ocean during 2014–16

View More View Less
  • 1 Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland
  • | 2 Climate Prediction Center, NOAA/NWS/NCEP, College Park, and Innovim, Greenbelt, Maryland
  • | 3 Center for Ocean–Land–Atmosphere Studies and Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, Fairfax, Virginia
Restricted access

Abstract

In this work, the evolution and prediction of the persistent and remarkable warm sea surface temperature anomaly (SSTA) in the northeastern Pacific during October 2013–June 2016 are examined. Based on experiments with an atmospheric model, the possible contribution of SSTAs in different ocean basins to the atmospheric circulation anomalies is identified. Further, through verifying the real-time forecasts, current capabilities in predicting such an extreme warm event with a state-of-the-art coupled general circulation model are assessed.

During the long-lasting warm event, there were two warm maxima in the area-averaged SSTA around January 2014 and July 2015, respectively. The warm anomaly originated at the oceanic surface and propagated downward and reached about 300 m. Model experiments forced by observed SST suggest that the long persistence of the atmospheric anomalies in the northeastern Pacific as a whole may be partially explained by SST forcing, particularly in the tropical Pacific Ocean associated with a persistent warm SSTA in 2014/15 and an extremely strong El Niño in 2015/16, via its influence on atmospheric circulation over the North Pacific. Nevertheless, it was a challenge to predict the evolution of this warm event, especially for its growth. That is consistent with the fact that the SSTAs in extratropical oceans are largely a consequence of unpredictable atmospheric variability.

Corresponding author e-mail: Zeng-Zhen Hu, zeng-zhen.hu@noaa.gov

Abstract

In this work, the evolution and prediction of the persistent and remarkable warm sea surface temperature anomaly (SSTA) in the northeastern Pacific during October 2013–June 2016 are examined. Based on experiments with an atmospheric model, the possible contribution of SSTAs in different ocean basins to the atmospheric circulation anomalies is identified. Further, through verifying the real-time forecasts, current capabilities in predicting such an extreme warm event with a state-of-the-art coupled general circulation model are assessed.

During the long-lasting warm event, there were two warm maxima in the area-averaged SSTA around January 2014 and July 2015, respectively. The warm anomaly originated at the oceanic surface and propagated downward and reached about 300 m. Model experiments forced by observed SST suggest that the long persistence of the atmospheric anomalies in the northeastern Pacific as a whole may be partially explained by SST forcing, particularly in the tropical Pacific Ocean associated with a persistent warm SSTA in 2014/15 and an extremely strong El Niño in 2015/16, via its influence on atmospheric circulation over the North Pacific. Nevertheless, it was a challenge to predict the evolution of this warm event, especially for its growth. That is consistent with the fact that the SSTAs in extratropical oceans are largely a consequence of unpredictable atmospheric variability.

Corresponding author e-mail: Zeng-Zhen Hu, zeng-zhen.hu@noaa.gov
Save