• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Bonfils, C. J. W., B. D. Santer, T. J. Phillips, K. Marvel, L. R. Leung, C. Doutriaux, and A. Capotondi, 2015: Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate. J. Climate, 28, 999710 013, doi:10.1175/JCLI-D-15-0341.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015a: Increased frequency of extreme La Niña events under greenhouse warming. Nat. Climate Change, 5, 132137, doi:10.1038/nclimate2492.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015b: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, doi:10.1038/nclimate2743.

  • Capotondi, A., Y.-G. Ham, A. Wittenberg, and J.-S. Kug, 2015: Climate model biases and El Niño Southern Oscillation (ENSO) simulation. U.S. CLIVAR Variations, Vol. 13 (1), U.S. CLIVAR Project Office, Washington, DC, 21–25. [Available online at http://usclivar.org/sites/default/files/documents/2015/Variations2015Winter_0.pdf.]

  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, doi:10.1175/2008JCLI2471.1.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter14_FINAL.pdf.]

  • Chung, C. T. Y., and S. B. Power, 2014: Precipitation response to La Niña and global warming in the Indo-Pacific. Climate Dyn., 43, 32933307, doi:10.1007/s00382-014-2105-9.

    • Search Google Scholar
    • Export Citation
  • Chung, C. T. Y., S. B. Power, J. M. Arblaster, H. A. Rashid, and G. L. Roff, 2014: Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Climate Dyn., 42, 18371856, doi:10.1007/s00382-013-1892-8.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892, doi:10.1175/2009JCLI2982.1.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., B. P. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Climate, 25, 73997420, doi:10.1175/JCLI-D-11-00494.1.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and Coauthors, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, doi:10.1175/2008BAMS2387.1.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2012: How well do current climate models simulate two types of El Niño? Climate Dyn., 39, 383398, doi:10.1007/s00382-011-1157-3.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2015: Improvement of ENSO simulation based on intermodel diversity. J. Climate, 28, 9981015, doi:10.1175/JCLI-D-14-00376.1.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2016: ENSO amplitude changes due to greenhouse warming in CMIP5: Role of mean tropical precipitation in the twentieth century. Geophys. Res. Lett., 43, 422430, doi:10.1002/2015GL066864.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., 2014: Regional response of annual-mean tropical rainfall to global warming. Atmos. Sci. Lett., 15, 103109, doi:10.1002/asl2.475.

    • Search Google Scholar
    • Export Citation
  • Huang, P., 2016: Time-varying response of ENSO-induced tropical Pacific rainfall to global warming in CMIP5 models. Part I: Multimodel ensemble results. J. Climate, 29, 57635778, doi:10.1175/JCLI-D-16-0058.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and S.-P. Xie, 2015: Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci., 8, 922926, doi:10.1038/ngeo2571.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and J. Ying, 2015: A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J. Climate, 28, 47064723, doi:10.1175/JCLI-D-14-00833.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, doi:10.1038/ngeo1792.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., W. Cai, F.-F. Jin, A. Santoso, L. Wu, E. Guilyardi, and S.-I. An, 2014: Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Climate Change, 4, 786790, doi:10.1038/nclimate2326.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., S.-I. An, Y.-G. Ham, and I.-S. Kang, 2010: Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theor. Appl. Climatol., 100, 275282, doi:10.1007/s00704-009-0183-0.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, doi:10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Long, S.-M., S.-P. Xie, and W. Liu, 2016: Uncertainty in tropical rainfall projections: Atmospheric circulation effect and the ocean coupling. J. Climate, 29, 26712687, doi:10.1175/JCLI-D-15-0601.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, doi:10.1175/JCLI-D-12-00283.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, doi:10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. Teng, 2007: Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Climate Dyn., 29, 779790, doi:10.1007/s00382-007-0268-3.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter10.pdf.]

  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, doi:10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541545, doi:10.1038/nature12580.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, doi:10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 33553372, doi:10.1175/JCLI-D-11-00363.1.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S. L., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, doi:10.1029/2012GL052759.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., 2003: A possible effect of an increase in the warm-pool SST on the magnitude of El Niño warming. J. Climate, 16, 185205, doi:10.1175/1520-0442(2003)016<0185:APEOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., T. Zhang, Y. Sun, and Y. Yu, 2014: Rectification of El Niño–Southern Oscillation into climate anomalies of decadal and longer time scales: Results from forced ocean GCM experiments. J. Climate, 27, 25452561, doi:10.1175/JCLI-D-13-00390.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694697, doi:10.1038/19505.

    • Search Google Scholar
    • Export Citation
  • Van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195, doi:10.5194/os-1-81-2005.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and A. T. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270, doi:10.1002/wcc.33.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-S. Kug, F.-F. Jin, M. Collins, M. Ohba, and A. T. Wittenberg, 2012: Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett., 39, L20703, doi:10.1029/2012GL053305.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., Y. Kamae, and M. Kimoto, 2014: Robust increase of the equatorial Pacific rainfall and its variability in a warmed climate. Geophys. Res. Lett., 41, 32273232, doi:10.1002/2014GL059692.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316; Corrigendum, 462, 674, doi:10.1038/nature08546.

    • Search Google Scholar
    • Export Citation
  • Ying, J., and P. Huang, 2016a: Cloud–radiation feedback as a leading source of uncertainty in the tropical Pacific SST warming pattern in CMIP5 models. J. Climate, 29, 38673881, doi:10.1175/JCLI-D-15-0796.1.

    • Search Google Scholar
    • Export Citation
  • Ying, J., and P. Huang, 2016b: The large-scale ocean dynamical effect on uncertainty in the tropical Pacific SST warming pattern in CMIP5 models. J. Climate, 29, 80518065, doi:10.1175/JCLI-D-16-0318.1.

    • Search Google Scholar
    • Export Citation
  • Ying, J., P. Huang, and R. Huang, 2016: Evaluating the formation mechanisms of the equatorial Pacific SST warming pattern in CMIP5 models. Adv. Atmos. Sci., 33, 433441, doi:10.1007/s00376-015-5184-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., and D.-Z. Sun, 2014: ENSO asymmetry in CMIP5 models. J. Climate, 27, 40704093, doi:10.1175/JCLI-D-13-00454.1.

  • Zhou, Z.-Q., and S.-P. Xie, 2015: Effects of climatological model biases on the projection of tropical climate change. J. Climate, 28, 99099917, doi:10.1175/JCLI-D-15-0243.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, X.-T. Zheng, Q. Liu, and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 90509064, doi:10.1175/JCLI-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 189 92 7
PDF Downloads 157 84 7

Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part II: Intermodel Uncertainty

View More View Less
  • 1 Center for Monsoon System Research and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Joint Center for Global Change Studies, Beijing, China
Restricted access

Abstract

Anomalous rainfall in the tropical Pacific driven by El Niño–Southern Oscillation (ENSO) is a crucial pathway of ENSO’s global impacts. The changes in ENSO rainfall under global warming vary among the models, even though previous studies have shown that many models project that ENSO rainfall will likely intensify and shift eastward in response to global warming. The present study evaluates the robustness of the changes in ENSO rainfall in 32 CMIP5 models forced under the representative concentration pathway 8.5 (RCP8.5) scenario. The robust increase in mean-state moisture dominates the robust intensification of ENSO rainfall. The uncertain amplitude changes in ENSO-related SST variability are the largest source of the uncertainty in ENSO rainfall changes through influencing the amplitude changes in ENSO-driven circulation variability, whereas the structural changes in ENSO SST and ENSO circulation enhancement in the central Pacific are more robust than the amplitude changes. The spatial pattern of the mean-state SST changes—the departure of local SST changes from the tropical mean—with an El Niño–like pattern is a relatively robust factor, although it also contains pronounced intermodel differences. The intermodel spread of historical ENSO circulation is another noteworthy source of the uncertainty in ENSO rainfall changes. The intermodel standard deviation of ENSO rainfall changes increases along with the increase in global-mean surface temperature. However, the robustness of enhanced ENSO rainfall changes in the central-eastern Pacific is almost unchanged, whereas the eastward shift of ENSO rainfall is increasingly robust along with the increase in global-mean surface temperature.

Corresponding author address: Dr. Ping Huang, Institute of Atmospheric Physics, Chinese Academy of Sciences, Bei-Er-Tiao #6, Zhong-Guan-Cun, Beijing 100190, China. E-mail: huangping@mail.iap.ac.cn

Abstract

Anomalous rainfall in the tropical Pacific driven by El Niño–Southern Oscillation (ENSO) is a crucial pathway of ENSO’s global impacts. The changes in ENSO rainfall under global warming vary among the models, even though previous studies have shown that many models project that ENSO rainfall will likely intensify and shift eastward in response to global warming. The present study evaluates the robustness of the changes in ENSO rainfall in 32 CMIP5 models forced under the representative concentration pathway 8.5 (RCP8.5) scenario. The robust increase in mean-state moisture dominates the robust intensification of ENSO rainfall. The uncertain amplitude changes in ENSO-related SST variability are the largest source of the uncertainty in ENSO rainfall changes through influencing the amplitude changes in ENSO-driven circulation variability, whereas the structural changes in ENSO SST and ENSO circulation enhancement in the central Pacific are more robust than the amplitude changes. The spatial pattern of the mean-state SST changes—the departure of local SST changes from the tropical mean—with an El Niño–like pattern is a relatively robust factor, although it also contains pronounced intermodel differences. The intermodel spread of historical ENSO circulation is another noteworthy source of the uncertainty in ENSO rainfall changes. The intermodel standard deviation of ENSO rainfall changes increases along with the increase in global-mean surface temperature. However, the robustness of enhanced ENSO rainfall changes in the central-eastern Pacific is almost unchanged, whereas the eastward shift of ENSO rainfall is increasingly robust along with the increase in global-mean surface temperature.

Corresponding author address: Dr. Ping Huang, Institute of Atmospheric Physics, Chinese Academy of Sciences, Bei-Er-Tiao #6, Zhong-Guan-Cun, Beijing 100190, China. E-mail: huangping@mail.iap.ac.cn
Save