• Alexander, M. A., A. Capotondi, A. Miller, F. Chai, R. Brodeur, and C. Deser, 2008: Decadal variability in the northeast Pacific in a physical-ecosystem model: Role of mixed layer depth and trophic interactions. J. Geophys. Res., 113, C02017, doi:10.1029/2007JC004359.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and A. W. Robertson, 1996: Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dyn., 12, 775784, doi:10.1007/s003820050142.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and L. A. Smith, 1996: Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. J. Climate, 9, 33733404, doi:10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, doi:10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, doi:10.1038/nature10946.

    • Search Google Scholar
    • Export Citation
  • Chen, X. Y., and K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345, 897903, doi:10.1126/science.1254937.

    • Search Google Scholar
    • Export Citation
  • Chen, X. Y., and J. M. Wallace, 2015: ENSO-like variability: 1900–2013. J. Climate, 28, 96239641, doi:10.1175/JCLI-D-15-0322.1.

  • Chikamoto, Y., M. Kimoto, M. Watanabe, M. Ishii, and T. Mochizuki, 2012: Relationship between the Pacific and Atlantic stepwise climate change during the 1990s. Geophys. Res. Lett., 39, L21710, doi:10.1029/2012GL053901.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., A. Timmermann, J.-J. Luo, T. Mochizuki, M. Kimoto, M. Watanabe, M. Ishii, S.-P. Xie, and F.-F. Jin, 2015: Skillful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, doi:10.1038/ncomms7869.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. Folland, L. Frankcombe, H. Dijkstra, G. Lesins, and M. Dubey, 2012: Greenland ice core evidence for spatial and temporal variability of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 39, L09705, doi:10.1029/2012GL051241.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926, doi:10.1175/2010JCLI3659.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and R. T. Knutson, 2000: Simulation of early 20th century global warming. Science, 287, 22462250, doi:10.1126/science.287.5461.2246.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, and F. E. Kates, 1984: Worldwide marine temperature fluctuations 1856–1981. Nature, 310, 670673, doi:10.1038/310670a0.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures. Nature, 320, 602606, doi:10.1038/320602a0.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., N. P. Gillett, and G. J. Marshall, 2012: Human influence on extratropical Southern Hemisphere precipitation. Geophys. Res. Lett., 39, L23711, doi:10.1029/2012GL054199.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and R. Vautard, 1991: Interdecadal oscillations and the warming trend in global temperature time series. Nature, 350, 324327, doi:10.1038/350324a0.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, doi:10.1029/2000RG000092.

  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., and G. J. van Oldenborgh, 2011: Tracing the upper ocean’s “missing heat.” Geophys. Res. Lett., 38, L14610, doi:10.1029/2011GL048417.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., R. Zhang, and L. W. Horowitz, 2016: Prospects for a prolonged slowdown in global warming in the early 20th century. Nat. Commun., 7, 13676, doi:10.1038/ncomms13676.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., M. G. Wyatt, J. A. Curry, and A. A. Tsonis, 2014: Two contrasting views of multidecadal climate variability in the twentieth century. Geophys. Res. Lett., 41, 68816888, doi:10.1002/2014GL061416.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., I. S. Kang, R. Farneti, and L. Feudale, 2011: Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett., 38, L03702, doi:10.1029/2010GL046248.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., and Coauthors, 2016: Atlantic forcing of Pacific decadal variability. Climate Dyn., 46, 23372351, doi:10.1007/s00382-015-2705-z.

    • Search Google Scholar
    • Export Citation
  • Leibensperger, E. M., and Coauthors, 2012: Climatic effects of 1950–2050 changes in US anthropogenic aerosols—Part 2: Climate response. Atmos. Chem. Phys., 12, 33493362, doi:10.5194/acp-12-3349-2012.

    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, doi:10.1038/nclimate2840.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1996: Joint spatiotemporal modes of surface temperature and sea level pressure variability in the Northern Hemisphere during the last century. J. Climate, 9, 21372162, doi:10.1175/1520-0442(1996)009<2137:JSMOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, doi:10.1038/nclimate2330.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hue, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 72987310, doi:10.1175/JCLI-D-12-00548.1.

    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., and D. B. Enfield, 1999: Rotated global modes of non-ENSO sea surface temperature variability. J. Climate, 12, 27342746, doi:10.1175/1520-0442(1999)012<2734:RGMONE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683686, doi:10.1029/97GL00504.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78, 22152225, doi:10.1175/1520-0477(1997)078<2215:DCVITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, doi:10.1175/JCLI-D-15-0508.1.

  • Power, S. T., C. Casey, A. Folland, A. Colman, and V. Mehta, 1999: Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513517, doi:10.1038/ngeo2727.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D. M., A. Collier, M. R. Dix, Y. Feng, H. B. Gordon, S. P. O’Farrell, I. N. Smith, and J. Syktus, 2010: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Int. J. Climatol., 30, 10671088, doi:10.1002/joc.1952.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, S. Nigam, and A. Kavvada, 2013: The Atlantic multidecadal oscillation in twentieth century climate simulations: Uneven progress from CMIP3 to CMIP5. Climate Dyn., 41, 33013315, doi:10.1007/s00382-013-1810-0.

    • Search Google Scholar
    • Export Citation
  • Scafetta, N., 2013: Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth-Sci. Rev., 126, 321357, doi:10.1016/j.earscirev.2013.08.008.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, doi:10.1038/367723a0.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., D. T. Shindell, and K. Tsigaridis, 2014: Reconciling warming trends. Nat. Geosci., 7, 158160, doi:10.1038/ngeo2105.

  • Seager, R., A. R. Karspeck, M. A. Cane, Y. Kushnir, A. Giannini, A. Kaplan, B. Kerman, and J. Velez, 2004: Predicting Pacific decadal variability. Earth’s Climate: The Ocean–Atmosphere Interaction. Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 105–120, doi:10.1029/147GM06.

  • Shindell, D. T., M. Schulz, Y. Ming, T. Takemura, G. Faluvegi, and V. Ramaswamy, 2010: Spatial scales of climate response to inhomogeneous radiative forcing. J. Geophys. Res., 115, D19110, doi:10.1029/2010JD014108.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. Faluvegi, L. Rotstayn, and G. Milly, 2015: Spatial patterns of radiative forcing and surface temperature response. J. Geophys. Res. Atmos., 120, 53855403, doi:10.1002/2014JD022752.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi:10.1029/2011GL048712.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Tung, K.-K., and J. Zhou, 2013: Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl. Acad. Sci. USA, 110, 20582063, doi:10.1073/pnas.1212471110.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., P. Yiou, and M. Ghil, 1992: Singular spectrum analysis: A toolkit for short noisy chaotic signals. Physica D, 58, 95126, doi:10.1016/0167-2789(92)90103-T.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18, 20802092, doi:10.1175/JCLI3365.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and L. Zhang, 2013: Multidecadal ocean temperature and salinity variability in the tropical North Atlantic: Linking with the AMO, AMOC, and subtropical cell. J. Climate, 26, 61376162, doi:10.1175/JCLI-D-12-00721.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L.-X., F. He, Z. Y. Liu, and C. Li, 2007: Atmospheric teleconnections of tropical Atlantic variability: Interhemispheric, tropical–extratropical, and cross-basin interactions. J. Climate, 20, 856870, doi:10.1175/JCLI4019.1.

    • Search Google Scholar
    • Export Citation
  • Wu, S., Z. Liu, R. Zhang, and T. Delworth, 2011: On the observed relationship between the Pacific decadal oscillation and the Atlantic multi-decadal oscillation. J. Oceanogr., 67, 2735, doi:10.1007/s10872-011-0003-x.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 01, 141, doi:10.1142/S1793536909000047.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, S. R. Long, and C.-K. Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA, 104, 14 88914 894, doi:10.1073/pnas.0701020104.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, doi:10.1007/s00382-011-1128-8.

    • Search Google Scholar
    • Export Citation
  • Wyatt, M., S. Kravtsov, and A. A. Tsonis, 2012: Atlantic Multidecadal Oscillation and Northern Hemisphere’s climate variability. Climate Dyn., 38, 929949, doi:10.1007/s00382-011-1071-8.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., C. Deser, G. Vecchi, J. Ma, H. Teng, and A. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, T., L. Oreopoulos, M. Zelinka, H. Yu, J. R. Norris, M. Chin, S. Platnick, and K. Meyer, 2016: Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 43, 13491356, doi:10.1002/2016GL067679.

    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., O. Bothe, H. F. Graf, N.-E. Omrani, A. Rubino, and J. H. Jungclaus, 2016: A decadally delayed response of the tropical Pacific to Atlantic multidecadal variability. Geophys. Res. Lett., 43, 784792, doi:10.1002/2015GL067284.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2007: Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophys. Res. Lett., 34, L12713, doi:10.1029/2007GL030225.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, doi:10.1029/2010GL044474.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. L. Delworth, and I. M. Held, 2007: Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett., 34, L02709, doi:10.1029/2006GL028683.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and Coauthors, 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 11351144, doi:10.1175/JAS-D-12-0331.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, T. L. Delworth, W. M. Kim, J. Robson, and S. G. Yeager, 2016: Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation.” Science, 352, 15271527, doi:10.1126/science.aaf1660.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., and K.-K. Tung, 2013: Deducing multidecadal anthropogenic global warming trends using multiple regression analysis. J. Atmos. Sci., 70, 38, doi:10.1175/JAS-D-12-0208.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1012 553 44
PDF Downloads 161 82 2

Observed and Simulated Fingerprints of Multidecadal Climate Variability and Their Contributions to Periods of Global SST Stagnation

View More View Less
  • 1 Princeton University, Princeton, New Jersey
  • | 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
Restricted access

Abstract

This study investigates spatiotemporal features of multidecadal climate variability using observations and climate model simulation. Aside from a long-term warming trend, observational SST and atmospheric circulation records are dominated by an almost 65-yr variability component. Although its center of action is over the North Atlantic, it manifests also over the Pacific and Indian Oceans, suggesting a tropical interbasin teleconnection maintained through an atmospheric bridge. An analysis shows that simulated internal climate variability in a coupled climate model (CSIRO Mk3.6.0) reproduces the main spatiotemporal features of the observed component. Model-based multidecadal variability includes a coupled ocean–atmosphere teleconnection, established through a zonally oriented atmospheric overturning circulation between the tropical North Atlantic and eastern tropical Pacific. During the warm SST phase in the North Atlantic, increasing SSTs over the tropical North Atlantic strengthen locally ascending air motion and intensify subsidence and low-level divergence in the eastern tropical Pacific. This corresponds with a strengthening of trade winds and cooling in the tropical central Pacific. The model’s derived component substantially shapes its global climate variability and is tightly linked to multidecadal variability of the Atlantic meridional overturning circulation (AMOC). This suggests potential predictive utility and underscores the importance of correctly representing North Atlantic variability in simulations of global and regional climate. If the observations-based component of variability originates from internal climate processes, as found in the model, the recently observed (1970s–2000s) North Atlantic warming and eastern tropical Pacific cooling might presage an ongoing transition to a cold North Atlantic phase with possible implications for near-term global temperature evolution.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0443.s1.

Corresponding author e-mail: Dr. Monika Barcikowska, monikab@princeton.edu

Abstract

This study investigates spatiotemporal features of multidecadal climate variability using observations and climate model simulation. Aside from a long-term warming trend, observational SST and atmospheric circulation records are dominated by an almost 65-yr variability component. Although its center of action is over the North Atlantic, it manifests also over the Pacific and Indian Oceans, suggesting a tropical interbasin teleconnection maintained through an atmospheric bridge. An analysis shows that simulated internal climate variability in a coupled climate model (CSIRO Mk3.6.0) reproduces the main spatiotemporal features of the observed component. Model-based multidecadal variability includes a coupled ocean–atmosphere teleconnection, established through a zonally oriented atmospheric overturning circulation between the tropical North Atlantic and eastern tropical Pacific. During the warm SST phase in the North Atlantic, increasing SSTs over the tropical North Atlantic strengthen locally ascending air motion and intensify subsidence and low-level divergence in the eastern tropical Pacific. This corresponds with a strengthening of trade winds and cooling in the tropical central Pacific. The model’s derived component substantially shapes its global climate variability and is tightly linked to multidecadal variability of the Atlantic meridional overturning circulation (AMOC). This suggests potential predictive utility and underscores the importance of correctly representing North Atlantic variability in simulations of global and regional climate. If the observations-based component of variability originates from internal climate processes, as found in the model, the recently observed (1970s–2000s) North Atlantic warming and eastern tropical Pacific cooling might presage an ongoing transition to a cold North Atlantic phase with possible implications for near-term global temperature evolution.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0443.s1.

Corresponding author e-mail: Dr. Monika Barcikowska, monikab@princeton.edu

Supplementary Materials

    • Supplemental Materials (DOCX 3.05 MB)
Save