A Mechanistically Credible, Poleward Shift in Warm-Season Precipitation Projected for the U.S. Southern Great Plains?

Melissa S. Bukovsky National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Melissa S. Bukovsky in
Current site
Google Scholar
PubMed
Close
,
Rachel R. McCrary National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Rachel R. McCrary in
Current site
Google Scholar
PubMed
Close
,
Anji Seth University of Connecticut, Storrs, Connecticut

Search for other papers by Anji Seth in
Current site
Google Scholar
PubMed
Close
, and
Linda O. Mearns National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Linda O. Mearns in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global and regional climate model ensembles project that the annual cycle of rainfall over the southern Great Plains (SGP) will amplify by midcentury. Models indicate that warm-season precipitation will increase during the early spring wet season but shift north earlier in the season, intensifying late summer drying. Regional climate models (RCMs) project larger precipitation changes than their global climate model (GCM) counterparts. This is particularly true during the dry season. The credibility of the RCM projections is established by exploring the larger-scale dynamical and local land–atmosphere feedback processes that drive future changes in the simulations, that is, the responsible mechanisms or processes. In this case, it is found that out of 12 RCM simulations produced for the North American Regional Climate Change Assessment Program (NARCCAP), the majority are mechanistically credible and consistent in the mean changes they are producing in the SGP. Both larger-scale dynamical processes and local land–atmosphere feedbacks drive an earlier end to the spring wet period and deepening of the summer dry season in the SGP. The midlatitude upper-level jet shifts northward, the monsoon anticyclone expands, and the Great Plains low-level jet increases in strength, all supporting a poleward shift in precipitation in the future. This dynamically forced shift causes land–atmosphere coupling to strengthen earlier in the summer, which in turn leads to earlier evaporation of soil moisture in the summer, resulting in extreme drying later in the summer.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0316.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Melissa S. Bukovsky, bukovsky@ucar.edu

Abstract

Global and regional climate model ensembles project that the annual cycle of rainfall over the southern Great Plains (SGP) will amplify by midcentury. Models indicate that warm-season precipitation will increase during the early spring wet season but shift north earlier in the season, intensifying late summer drying. Regional climate models (RCMs) project larger precipitation changes than their global climate model (GCM) counterparts. This is particularly true during the dry season. The credibility of the RCM projections is established by exploring the larger-scale dynamical and local land–atmosphere feedback processes that drive future changes in the simulations, that is, the responsible mechanisms or processes. In this case, it is found that out of 12 RCM simulations produced for the North American Regional Climate Change Assessment Program (NARCCAP), the majority are mechanistically credible and consistent in the mean changes they are producing in the SGP. Both larger-scale dynamical processes and local land–atmosphere feedbacks drive an earlier end to the spring wet period and deepening of the summer dry season in the SGP. The midlatitude upper-level jet shifts northward, the monsoon anticyclone expands, and the Great Plains low-level jet increases in strength, all supporting a poleward shift in precipitation in the future. This dynamically forced shift causes land–atmosphere coupling to strengthen earlier in the summer, which in turn leads to earlier evaporation of soil moisture in the summer, resulting in extreme drying later in the summer.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0316.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Melissa S. Bukovsky, bukovsky@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 16.40 MB)
Save
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., T. L. Mote, G. P. Dixon, S. L. Trotter, E. J. Powell, J. D. Durkee, and A. J. Grundstein, 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131, 30033017, doi:10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barandiaran, D., S. Y. Wang, and K. Hilburn, 2013: Observed trends in the Great Plains low-level jet and associated precipitation changes in relation to recent droughts. Geophys. Res. Lett., 40, 62476251, doi:10.1002/2013GL058296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and Coauthors, 2013: The practitioner’s dilemma: How to assess the credibility of downscaled climate projections. Eos, Trans. Amer. Geophys. Union, 94, 424425, doi:10.1002/2013EO460005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brekke, L. D., M. D. Detinger, E. P. Maurer, and M. Anderson, 2008: Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments. Climatic Change, 89, 371394, doi:10.1007/s10584-007-9388-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, doi:10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., P. A. Dirmeyer, A. Sudradjat, B. S. Levy, and F. Bernal, 2001: A 36-yr climatological description of the evaporative sources of warm-season precipitation in the Mississippi River basin. J. Hydrometeor., 2, 537557, doi:10.1175/1525-7541(2001)002<0537:AYCDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., and D. J. Karoly, 2011: A regional modeling study of climate change impacts on warm-season precipitation in the central United States. J. Climate, 24, 19852002, doi:10.1175/2010JCLI3447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., D. J. Gochis, and L. O. Mearns, 2013: Towards assessing NARCCAP regional climate model credibility for the North American monsoon: Current climate simulations. J. Climate, 26, 88028826, doi:10.1175/JCLI-D-12-00538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., C. M. Carrillo, D. J. Gochis, D. M. Hammerling, R. R. McCrary, and L. O. Mearns, 2015: Towards assessing NARCCAP regional climate model credibility for the North American monsoon: Future climate simulations. J. Climate, 28, 67076728, doi:10.1175/JCLI-D-14-00695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caya, D., and R. Laprise, 1999: A semi-implicit semi-Lagrangian regional climate model: The Canadian RCM. Mon. Wea. Rev., 127, 341362, doi:10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2001: Thunderstorm rainfall in the conterminous United States. Bull. Amer. Meteor. Soc., 82, 19251940, doi:10.1175/1520-0477(2001)082<1925:TRITCU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Cohen, J., 1960: A coefficient of agreement for nominal scales. Educ. Psychol. Meas., 20, 3746, doi:10.1177/001316446002000104.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model: CCSM3. J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

  • Computational and Information Systems Laboratory, 2012: Yellowstone: IBM iDataPlex system. National Center for Atmospheric Research. [Available online at https://www2.cisl.ucar.edu/supercomputer/yellowstone.]

  • Cook, K. H., E. K. Vizy, Z. S. Launer, and C. M. Patricola, 2008: Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. J. Climate, 21, 63216340, doi:10.1175/2008JCLI2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Delworth, T., and S. Manabe, 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523547, doi:10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diem, J., 2013: Comments on “Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States.” J. Climate, 26, 679682, doi:10.1175/JCLI-D-11-00390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, doi:10.1175/JHM557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Evidence for enhanced land–atmosphere feedback in a warming climate. J. Hydrometeor., 13, 981995, doi:10.1175/JHM-D-11-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2013: Evolving land–atmosphere interactions over North America from CMIP5 simulations. J. Climate, 26, 73137327, doi:10.1175/JCLI-D-12-00454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, doi:10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, doi:10.1175/WAF866.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., B. Govindasamy, J. P. Iorio, J. Milovich, K. R. Sperber, K. E. Taylor, M. F. Wehner, and S. L. Thompson, 2003: High-resolution simulations of global climate, part 1: Present climate. Climate Dyn., 21, 371390, doi:10.1007/s00382-003-0339-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall/CRC, 450 pp.

    • Crossref
    • Export Citation
  • Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun., 7, 13429, doi:10.1038/ncomms13429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Centre for Climate Modeling and Analysis global coupled model and its climate. Climate Dyn., 16, 451467, doi:10.1007/s003820050339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleiss, J. L., 1971: Measuring nominal scale agreement among many raters. Psychol. Bull., 76, 378382, doi:10.1037/h0031619.

  • Gensini, V. A., C. Ramseyer, and T. L. Mote, 2014: Future convective environments using NARCCAP. Int. J. Climatol., 34, 16991705, doi:10.1002/joc.3769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation Regional Climate Model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 27942813, doi:10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, G. de Canio, and G. T. Bates, 1993b: Development of a second-generation Regional Climate Model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 28142832, doi:10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168, doi:10.1007/s003820050010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1993: A description of the Fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 128 pp., doi:10.5065/D60Z716B.

    • Crossref
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, doi:10.1175/JHM511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2014: Examining future changes in the character of Central U.S. warm-season precipitation using dynamical downscaling. J. Geophys. Res. Atmos., 119, 13 11613 136, doi:10.1002/2014JD022575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., P. K. Snyder, and S. Leiss, 2013: Use of dynamical downscaling to improve the simulation of Central U.S. warm season precipitation in CMIP5 models. J. Geophys. Res. Atmos., 118, 12 52212 536, doi:10.1002/2013JD019994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfand, M. H., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784806, doi:10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, doi:10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Chen, and A. V. Douglas, 1999: Interannual variability of the North American warm season precipitation regime. J. Climate, 12, 653680, doi:10.1175/1520-0442(1999)012<0653:IVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8, 294299, doi:10.1175/1520-0434(1993)008<0294:MCAWBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R. G., D. C. Hassell, D. Hudson, S. S. Wilson, G. J. Jenkins, and J. F. B. Mitchell, 2003: Workbook on generating high-resolution climate change scenarios using PRECIS. United Nations Development Programme Rep., 32 pp.

  • Juang, H. M., S. Y. Hong, and M. Kanamitsu, 1997: The NCEP regional spectral model. An update. Bull. Amer. Meteor. Soc., 78, 21252143, doi:10.1175/1520-0477(1997)078<2125:TNRSMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutsoyiannis, D., A. Efstratiadis, N. Mamassis, and A. Christofides, 2008: On the credibility of climate predictions. Hydrol. Sci. J., 53, 671684, doi:10.1623/hysj.53.4.671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M. and Coauthors, 2016: Long-term changes in the climatology of transient inverted troughs over the North American monsoon region and their effects on precipitation. J. Climate, 29, 60376064, doi:10.1175/JCLI-D-15-0726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W. H., L. F. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 14991506, doi:10.1175/2010JCLI3829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., J. Pan, J. Zhu, K. E. Kunkel, J. X. L. Wang, and A. Dai, 2006: Regional climate model downscaling of the U.S. summer climate and future change. J. Geophys. Res., 111, D10108, doi:10.1029/2005JD006685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., M. Alexander, J. D. Scott, and J. Barsugli, 2013: High-resolution downscaled simulations of warm-season extreme precipitation events in the Colorado front range under past and future climates. J. Climate, 26, 86718689, doi:10.1175/JCLI-D-12-00744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2007: Assessment of the severe weather environment in North America simulated by a global climate model. Atmos. Sci. Lett., 8, 100106, doi:10.1002/asl.159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCrary, R. R., and D. A. Randall, 2010: Great Plains drought in simulations of the twentieth century. J. Climate, 23, 21782196, doi:10.1175/2009JCLI3061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2007: The North American Regional Climate Change Assessment Program dataset. National Center for Atmospheric Research Earth System Grid, doi:10.5065/D6RN35ST.

    • Crossref
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, doi:10.1175/BAMS-D-11-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2013: Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Climatic Change, 120, 965975, doi:10.1007/s10584-013-0831-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2014: Climate Change in North America. Springer, 267 pp.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Moncrieff, M. W., and C. H. Liu, 2006: Representing convective organization in prediction models by a hybrid strategy. J. Atmos. Sci., 63, 34043420, doi:10.1175/JAS3812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R., and Coauthors, 2008: Towards New Scenarios for Analysis of Emissions. Intergovernmental Panel on Climate Change, 132 pp.

  • Myoung, B., and J. W. Nielsen-Gammon, 2010: The convective instability pathway to warm season drought in Texas. Part I: The role of convective inhibition and its modulation by soil moisture. J. Climate, 23, 44614473, doi:10.1175/2010JCLI2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • NCL, 2016: The NCAR Command Language, version 6.3.0. UCAR/NCAR/CISL/TDD, doi:10.5065/D6WD3XH5.

    • Crossref
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 186 pp.

  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409, doi:10.1175/BAMS-88-9-1395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and K. H. Cook, 2013a: Mid-twenty-first century warm season climate change in the central United States. Part I: Regional and global model predictions. Climate Dyn., 40, 551568, doi:10.1007/s00382-012-1605-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and K. H. Cook, 2013b: Mid-twenty-first century climate change in the Central United States. Part II: Climate change processes. Climate Dyn., 40, 569583, doi:10.1007/s00382-012-1379-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123146, doi:10.1007/s003820050009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roads, J. O., S. C. Chen, A. K. Guetter, and K. P. Georgakakos, 1994: Large-scale aspects of the United States hydrologic cycle. Bull. Amer. Meteor. Soc., 75, 15891610, doi:10.1175/1520-0477(1994)075<1589:LSAOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Tandon, N. F., E. P. Gerber, A. H. Sobel, and L. M. Polvani, 2013: Understanding Hadley cell expansion versus contraction: Insights from simplified models and implications for recent observations. J. Climate, 26, 43044321, doi:10.1175/JCLI-D-12-00598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tawfik, A. B., and P. A. Dirmeyer, 2014: A process-based framework for quantifying the atmospheric preconditioning of surface-triggered convection. Geophys. Res. Lett., 41, 173178, doi:10.1002/2013GL057984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., J. M. Arblaster, and R. Knutti, 2011: Mapping model agreement on future climate projections. Geophys. Res. Lett., 38, L23701, doi:10.1029/2011GL049863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thibeault, J. M., and A. Seth, 2014: A framework for evaluating model credibility for warm-season precipitation in northeastern North America: A case study of CMIP5 simulations and projections. J. Climate, 27, 493510, doi:10.1175/JCLI-D-12-00846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, doi:10.1073/pnas.0705494104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, D. F., and X. Li, 2009: Characteristics of warm season precipitating storms in the Arkansas-Red River basin. J. Geophys. Res., 114, D13108, doi:10.1029/2008JD011093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, doi:10.1175/MWR3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Wang, S. Y., and T. C. Chen, 2009: The late spring maximum of rainfall over the U.S. central plains and the role of the low-level jet. J. Climate, 22, 46964709, doi:10.1175/2009JCLI2719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., S. Schubert, and H. Wang, 2009: Warm season variations in the low-level circulation and precipitation over the central United States in observations, AMIP simulations, and idealized SST experiments. J. Climate, 22, 54015420, doi:10.1175/2009JCLI2984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., 2013: Very extreme seasonal precipitation in the NARCCAP ensemble: Model performance and projections. Climate Dyn., 40, 5980, doi:10.1007/s00382-012-1393-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, 4220, doi:10.1029/2001JD001005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 946 314 14
PDF Downloads 509 106 3