Dominant Synoptic Disturbance in the Extreme Rainfall at Cherrapunji, Northeast India, Based on 104 Years of Rainfall Data (1902–2005)

Fumie Murata Faculty of Science and Technology, Kochi University, Kochi, Japan

Search for other papers by Fumie Murata in
Current site
Google Scholar
PubMed
Close
,
Toru Terao Faculty of Education, Kagawa University, Takamatsu, Japan

Search for other papers by Toru Terao in
Current site
Google Scholar
PubMed
Close
,
Hatsuki Fujinami Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

Search for other papers by Hatsuki Fujinami in
Current site
Google Scholar
PubMed
Close
,
Taiichi Hayashi Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan

Search for other papers by Taiichi Hayashi in
Current site
Google Scholar
PubMed
Close
,
Haruhisa Asada Nara Women’s University, Nara, Japan

Search for other papers by Haruhisa Asada in
Current site
Google Scholar
PubMed
Close
,
Jun Matsumoto Tokyo Metropolitan University, Hachioji, and Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Search for other papers by Jun Matsumoto in
Current site
Google Scholar
PubMed
Close
, and
Hiambok J. Syiemlieh Department of Geography, North-Eastern Hill University, Shillong, India

Search for other papers by Hiambok J. Syiemlieh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The characteristics of active rainfall spells (ARSs) at Cherrapunji, northeast India, where extreme high rainfall is experienced, and their relationships with large-scale dynamics were studied using daily rainfall data from 1902 to 2005 and Japanese 55-Year Reanalysis from 1958 to 2005. Extreme high daily rainfalls occur in association with ARSs. The extremely large amounts of rainfall in the monsoon season are determined by the cumulative rainfall during ARSs. ARSs start when anomalous anticyclonic circulation (AAC) at 850 hPa propagates westward from the South China Sea and western North Pacific, and covers the northern Bay of Bengal. The AAC propagates farther westward and suppresses convection over central India during ARSs at Cherrapunji, and continues for 3 to 14 days. Consequently, a northward shift of the monsoon trough during the “break” in the Indian core region occurs. The westerly wind, which prevails in the northern portion of the AAC, transports moisture toward northeast India and enhances moisture convergence over northeast India with southerly moisture transport from the Bay of Bengal, and greatly intensifies the orographic rainfall. In the upper troposphere, the Tibetan high tends to extend southward with the onset of ARSs. A linear relationship can be seen between the length and total rainfall of an ARS. Longer ARSs tend to result in greater total rainfall. AACs with a greater zonal scale tend to produce longer and more intense ARSs. This study provides evidence for the effect of western North Pacific AACs on the Indian summer monsoon.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fumie Murata, fumie@kochi-u.ac.jp

Abstract

The characteristics of active rainfall spells (ARSs) at Cherrapunji, northeast India, where extreme high rainfall is experienced, and their relationships with large-scale dynamics were studied using daily rainfall data from 1902 to 2005 and Japanese 55-Year Reanalysis from 1958 to 2005. Extreme high daily rainfalls occur in association with ARSs. The extremely large amounts of rainfall in the monsoon season are determined by the cumulative rainfall during ARSs. ARSs start when anomalous anticyclonic circulation (AAC) at 850 hPa propagates westward from the South China Sea and western North Pacific, and covers the northern Bay of Bengal. The AAC propagates farther westward and suppresses convection over central India during ARSs at Cherrapunji, and continues for 3 to 14 days. Consequently, a northward shift of the monsoon trough during the “break” in the Indian core region occurs. The westerly wind, which prevails in the northern portion of the AAC, transports moisture toward northeast India and enhances moisture convergence over northeast India with southerly moisture transport from the Bay of Bengal, and greatly intensifies the orographic rainfall. In the upper troposphere, the Tibetan high tends to extend southward with the onset of ARSs. A linear relationship can be seen between the length and total rainfall of an ARS. Longer ARSs tend to result in greater total rainfall. AACs with a greater zonal scale tend to produce longer and more intense ARSs. This study provides evidence for the effect of western North Pacific AACs on the Indian summer monsoon.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fumie Murata, fumie@kochi-u.ac.jp
Save
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaggar, T. S., 1984: Reunion sets new rainfall records. Weather, 39, 1214, doi:10.1002/j.1477-8696.1984.tb05440.x.

  • Chen, T.-C., and J.-M. Chen, 1993: The 10–20-day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall. Mon. Wea. Rev., 121, 24652482, doi:10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. Sci. Online Lett. Atmos., 7, 149152, https://doi.org/10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Fujinami, H., and Coauthors, 2011: Characteristic intraseasonal oscillation of rainfall and its effect on interannual variability over Bangladesh during boreal summer. Int. J. Climatol., 31, 11921204, doi:10.1002/joc.2146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujinami, H., T. Yasunari, and A. Morimoto, 2014: Dynamics of distinct intraseasonal oscillation in summer monsoon rainfall over the Meghalaya–Bangladesh–western Myanmar region: Covariability between the tropics and mid-latitudes. Climate Dyn., 43, 21472166, doi:10.1007/s00382-013-2040-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429469, doi:10.1146/annurev.earth.31.100901.141251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and P. V. Joseph, 2003: On breaks of the Indian monsoon. J. Earth Syst. Sci., 112, 529558, doi:10.1007/BF02709778.

  • Goswami, B. B., P. Mukhopadhyay, R. Mahanta, and B. N. Goswami, 2010: Multiscale interaction with topography and extreme rainfall events in the northeast Indian region. J. Geophys. Res., 115, D12114, doi:10.1029/2009JD012275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govardhan, D., V. B. Rao, and K. Ashok, 2017: Understanding the revival of the Indian summer monsoon after breaks. J. Atmos. Sci., 74, 14171429, doi:10.1175/JAS-D-16-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guhathakurta, P., 2007: Highest recorded point rainfall over India. Weather, 62, 349, doi:10.1002/wea.154.

  • Hamada, A., Y. N. Takayabu, C. Liu, and E. J. Zipser, 2015: Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun., 6, 6213, doi:10.1038/ncomms7213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 1989: Intraseasonal periodicities in Indian rainfall. J. Atmos. Sci., 46, 28382862, doi:10.1175/1520-0469(1989)046<2838:IPIIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatsuzuka, D., and H. Fujinami, 2017: Effects of the South Asian monsoon intraseasonal modes on genesis of low pressure systems over Bangladesh. J. Climate, 30, 24812499, doi:10.1175/JCLI-D-16-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, T., and B. Messerli, 2006: Floods in Bangladesh. United Nations Press, 450 pp.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Jenamani, R. K., S. C. Bhan, and S. R. Kalsi, 2006: Observational/forecasting aspects of the meteorological event that caused a record highest rainfall in Mumbai. Curr. Sci., 90, 13441362.

    • Search Google Scholar
    • Export Citation
  • Jennings, A. H., 1950: World’s greatest observed point rainfalls. Mon. Wea. Rev., 78, 45, doi:10.1175/1520-0493(1950)078<0004:WGOPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiguchi, M., and T. Oki, 2010: Point precipitation observation extremes in the world and Japan. J. Japan Soc. Hydrol. Water Resour., 23, 231247, doi:10.3178/jjshwr.23.231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, doi:10.1175/2008JCLI2368.1.

  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I. Observational aspects. J. Atmos. Sci., 33, 19371954, doi:10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and P. Ardanuy, 1980: The 10 to 20-day westward propagating mode and “breaks in the monsoons.” Tellus, 32, 1526, doi:10.1111/j.2153-3490.1980.tb01717.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, A., R. Kripalani, S. Sabade, and M. Rajeevan, 2011: Role of intra-seasonal oscillations in modulating Indian summer monsoon rainfall. Climate Dyn., 36, 10051021, doi:10.1007/s00382-010-0973-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, K.-J. Ha, and J.-Y. Lee, 2013: Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation. Climate Dyn., 40, 27612774, doi:10.1007/s00382-012-1394-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murata, F., T. Hayashi, J. Matsumoto, and H. Asada, 2007: Rainfall on the Meghalaya Plateau in northeastern India—One of the rainiest places in the world. Nat. Hazards, 42, 391399, doi:10.1007/s11069-006-9084-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murata, F., T. Terao, T. Hayashi, H. Asada, and J. Matsumoto, 2008: Relationship between atmospheric conditions at Dhaka, Bangladesh, and rainfall at Cherrapunjee, India. Nat. Hazards, 44, 399410, doi:10.1007/s11069-007-9125-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, C. G., J. L. Oster, W. D. Sharp, R. Bennartz, N. P. Kelley, A. K. Covey, and S. F. M. Breitenbach, 2015: Northeast Indian stalagmite records Pacific decadal climate change: Implications for moisture transport and drought in India. Geophys. Res. Lett., 42, 41244132, doi:10.1002/2015GL063826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, doi:10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohsawa, T., T. Hayashi, Y. Mitsuta, and J. Matsumoto, 2000: Intraseasonal variation of monsoon activities associated with the rainfall over Bangladesh during the 1995 summer monsoon season. J. Geophys. Res., 105, 29 44529 459, doi:10.1029/2000JD900499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pai, D. S., L. Sridhar, M. Rajeevan, O. P. Sreejith, N. S. Satbhai, and B. Mukhopadhyay, 2014: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65, 118.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., L. Sridhar, and M. R. Ramesh Kumar, 2016: Active and break events of Indian summer monsoon during 1901–2014. Climate Dyn., 46, 39213939, doi:10.1007/s00382-015-2813-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, doi:10.1007/s12040-010-0019-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramaswamy, C., 1962: Breaks in the Indian summer monsoon as a phenomenon of interaction between the easterly and the sub-tropical westerly jet streams. Tellus, 14, 337349, doi:10.3402/tellusa.v14i3.9560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, V. B., 1971: Dynamic instability of the zonal current during a break monsoon. Tellus, 23, 111112, doi:10.1111/j.2153-3490.1971.tb00552.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., S. Medina, and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, doi:10.1175/2009JCLI3140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, D., P. Singh, and K. Nakamura, 2012: Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM precipitation radar. J. Geophys. Res., 117, D22106, doi:10.1029/2012JD018140.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, doi:10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, H. G., H. Fujinami, T. Yasunari, J. Matsumoto, and S. Baimoung, 2015: Role of tropical cyclones along the monsoon trough in the 2011 Thai flood and interannual variability. J. Climate, 28, 14651476, doi:10.1175/JCLI-D-14-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terao, T., F. Murata, A. Habib, S. H. Bhuiyan, S. A. Choudhury, and T. Hayashi, 2013: Impacts of rapid warm-to-cold ENSO transitions on summer monsoon rainfall over the northeastern Indian subcontinent. J. Meteor. Soc. Japan, 91, 121, doi:10.2151/jmsj.2013-101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 13861400, doi:10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, doi:10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, doi:10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Xu, N. H. Saji, Y. Wang, and W. T. Liu, 2006: Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Climate, 19, 34203429, doi:10.1175/JCLI3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part II: Unstable waves. J. Atmos. Sci., 53, 35893605, doi:10.1175/1520-0469(1996)053<3589:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1980: A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225229, doi:10.2151/jmsj1965.58.3_225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., O. Arakawa, K. Kamiguchi, H. Kawamoto, M. I. Nodzu, and A. Hamada, 2009: A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Sci. Online Lett. Atmos., 5, 137140.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshino, M. M., 1975: Climate in a Small Area. University of Tokyo Press, 540 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 847 249 22
PDF Downloads 531 116 8