Systematic Errors in South Asian Monsoon Simulation: Importance of Equatorial Indian Ocean Processes

H. Annamalai International Pacific Research Center and Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by H. Annamalai in
Current site
Google Scholar
PubMed
Close
,
Bunmei Taguchi Japan Agency for Marine Earth Science and Technology, Yokohama, and Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan

Search for other papers by Bunmei Taguchi in
Current site
Google Scholar
PubMed
Close
,
Julian P. McCreary International Pacific Research Center and Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Julian P. McCreary in
Current site
Google Scholar
PubMed
Close
,
Motoki Nagura Japan Agency for Marine Earth Science and Technology, Yokohama, Japan

Search for other papers by Motoki Nagura in
Current site
Google Scholar
PubMed
Close
, and
Toru Miyama Japan Agency for Marine Earth Science and Technology, Yokohama, Japan

Search for other papers by Toru Miyama in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Forecasting monsoon rainfall using dynamical climate models has met with little success, partly due to models’ inability to represent the monsoon climatological state accurately. In this article the nature and dynamical causes of their biases are investigated. The approach is to analyze errors in multimodel-mean climatological fields determined from CMIP5, and to carry out sensitivity experiments using a coupled model [the Coupled Model for the Earth Simulator (CFES)] that does represent the monsoon realistically. Precipitation errors in the CMIP5 models persist throughout the annual cycle, with positive (negative) errors occurring over the near-equatorial western Indian Ocean (South Asia). Model errors indicate that an easterly wind stress bias Δτ along the equator begins during April–May and peaks during November; the severity of the Δτ is that the Wyrtki jets, eastward-flowing equatorial currents during the intermonsoon seasons (April–May and October–November), are almost eliminated. An erroneous east–west SST gradient (warm west and cold east) develops in June. The structure of the model errors indicates that they arise from Bjerknes feedback in the equatorial Indian Ocean (EIO). Vertically integrated moisture and moist static energy budgets confirm that warm SST bias in the western EIO anchors moist processes that cause the positive precipitation bias there. In CFES sensitivity experiments in which Δτ or warm SST bias over the western EIO is artificially introduced, errors in the EIO are similar to those in the CMIP5 models; moreover, precipitation over South Asia is reduced. An overall implication of these results is that South Asian rainfall errors in CMIP5 models are linked to errors of coupled processes in the western EIO, and in coupled models correct representation of EIO coupled processes (Bjerknes feedback) is a necessary condition for realistic monsoon simulation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. H. Annamalai, hanna@hawaii.edu

Abstract

Forecasting monsoon rainfall using dynamical climate models has met with little success, partly due to models’ inability to represent the monsoon climatological state accurately. In this article the nature and dynamical causes of their biases are investigated. The approach is to analyze errors in multimodel-mean climatological fields determined from CMIP5, and to carry out sensitivity experiments using a coupled model [the Coupled Model for the Earth Simulator (CFES)] that does represent the monsoon realistically. Precipitation errors in the CMIP5 models persist throughout the annual cycle, with positive (negative) errors occurring over the near-equatorial western Indian Ocean (South Asia). Model errors indicate that an easterly wind stress bias Δτ along the equator begins during April–May and peaks during November; the severity of the Δτ is that the Wyrtki jets, eastward-flowing equatorial currents during the intermonsoon seasons (April–May and October–November), are almost eliminated. An erroneous east–west SST gradient (warm west and cold east) develops in June. The structure of the model errors indicates that they arise from Bjerknes feedback in the equatorial Indian Ocean (EIO). Vertically integrated moisture and moist static energy budgets confirm that warm SST bias in the western EIO anchors moist processes that cause the positive precipitation bias there. In CFES sensitivity experiments in which Δτ or warm SST bias over the western EIO is artificially introduced, errors in the EIO are similar to those in the CMIP5 models; moreover, precipitation over South Asia is reduced. An overall implication of these results is that South Asian rainfall errors in CMIP5 models are linked to errors of coupled processes in the western EIO, and in coupled models correct representation of EIO coupled processes (Bjerknes feedback) is a necessary condition for realistic monsoon simulation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. H. Annamalai, hanna@hawaii.edu
Save
  • Annamalai, H., 2010: Moist dynamical linkage between the equatorial Indian Ocean and the South Asian monsoon trough. J. Atmos. Sci., 67, 589610, doi:10.1175/2009JAS2991.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, doi:10.1016/S0967-0645(03)00058-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., P. Liu, and S.-P. Xie, 2005: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Climate, 18, 41504167, doi:10.1175/JCLI3533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. Hafner, A. Kumar, and H. Wang, 2014: A framework for dynamical seasonal prediction of precipitation over the Pacific islands. J. Climate, 27, 32723297, doi:10.1175/JCLI-D-13-00379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, doi:10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, doi:10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kållberg, S. Kobayashi, and S. Uppala, 2009: The ERA-Interim archive. ECMWF, ERA Report Series 1, 16 pp., https://www.ecmwf.int/en/elibrary/8173-era-interim-archive.

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, doi:10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and J. V. Hurley, 2013: Thermodynamic bias in the multimodel mean boreal summer monsoon. J. Climate, 26, 22792287, doi:10.1175/JCLI-D-12-00493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, R. A., and X. Liu, 1993: Observations and dynamics of semiannual and annual sea levels near the eastern equatorial Indian Ocean boundary. J. Phys. Oceanogr., 23, 386399, doi:10.1175/1520-0485(1993)023<0386:OADOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, R. A., A. F. Moise, and L. I. Hanson, 2011: Tropical Australian climate and Australian monsoon as simulated by 23 CMIP3 models. J. Geophys. Res., 116, D10116, doi:10.1029/2010JD015149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002: World Ocean Atlas 2002: Objective analyses, data statistics, and figures, CD-ROM documentation. National Oceanographic Data Center Internal Rep. 17, 17 pp., https://odv.awi.de/fileadmin/user_upload/odv/data/WOA01/README.PDF.

  • Del Sole, T., and J. Shukla, 2002: Linear prediction of Indian monsoon rainfall. J. Climate, 15, 36453658, doi:10.1175/1520-0442(2002)015<3645:LPOIMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132329, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., A. Kuwano-Yoshida, N. Komori, and W. Ohfuchi, 2008: Description of AFES 2: Improvements for high-resolution and coupled simulations. High Resolution Numerical Modeling of the Atmosphere and Ocean, W. Ohfuchi and K. Hamilton, Eds., Springer, 77–87.

    • Crossref
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

  • Han, W., J. P. McCreary, D. L. T. Anderson, and A. J. Mariano, 1999: Dynamics of the eastern surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29, 21912209, doi:10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637655, doi:10.1002/qj.49710142918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 1991: Can reflected extra-equatorial Rossby waves drive ENSO? J. Phys. Oceanogr., 21, 444452, doi:10.1175/1520-0485(1991)021<0444:CREERW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komori, N., A. Kuwano-Yoshida, T. Enomoto, H. Sasaki, and W. Ohfuchi, 2008: High-resolution simulation of the global coupled atmosphere–ocean system: Description and preliminary outcomes of CFES (CGCM for the Earth Simulator). High-Resolution Numerical Modelling of the Atmosphere and Ocean, W. Ohfuchi and K. Hamilton, Eds., Springer, 31–45.

    • Crossref
    • Export Citation
  • Levine, R. C., A. G. Turner, G. Marathayil, and G. Martin, 2013: The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Climate Dyn., 41, 155172, https://doi.org/10.1007/s00382-012-1656-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015: Monsoon-induced biases of climate models in the tropical Indian Ocean. J. Climate, 28, 30583072, doi:10.1175/JCLI-D-14-00740.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 17811798, doi:10.1175/JCLI-D-13-00474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, S. Ineson, T. Reichler, and J. Kim, 2010: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Climate, 23, 59335957, doi:10.1175/2010JCLI3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1985: Modeling equatorial ocean circulation. Annu. Rev. Fluid Mech., 17, 359409, doi:10.1146/annurev.fl.17.010185.002043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and R. Molinari, 1993: A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr., 31, 181244, doi:10.1016/0079-6611(93)90002-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African‐Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, doi:10.1175/2008BAMS2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary, T. G. Jensen, J. Loschnigg, S. Godfrey, and A. Ishida, 2003: Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep-Sea Res. II, 50, 20232047, https://doi.org/10.1016/S0967-0645(03)00044-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2010: Wyrtki jet dynamics: Seasonal variability. J. Geophys. Res., 115, C07009, doi:10.1029/2009JC005922.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., W. Sasaki, T. Tozuka, J.-J. Luo, S. K. Behera, and T. Yamagata, 2013: Longitudinal biases in the Seychelles Dome simulated by 35 ocean–atmosphere coupled general circulation models. J. Geophys. Res. Oceans, 118, 831846, doi:10.1029/2012JC008352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and H. Su, 2005: Moist teleconnection mechanisms for the tropical South American and Atlantic sector. J. Climate, 18, 39283950, doi:10.1175/JCLI3517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, doi:10.1175/2009JAS2962.1.

  • Noh, Y. and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15 62115 634, doi:10.1029/1999JC900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, 1997: Description of CCSR/NIES Atmospheric General Circulation Model. CGER’s Supercomputer Monograph Rep. 3, National Institute of Environmental Sciences, Tsukuba, Japan, 1–48.

  • O’Brien, J. J., and H. E. Hurlburt, 1974: An equatorial jet in the Indian Ocean: Theory. Science, 184, 10751077, doi:10.1126/science.184.4141.1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 2000: MOM 3.0 manual. Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration Tech Rep., 680 pp.

  • Rao, R. R., and R. Sivakumar, 2000: Seasonal variability of near-surface thermal structure and heat budget of the mixed layer of the tropical Indian Ocean from a new global ocean temperature climatology. J. Geophys. Res., 105, 9951015, doi:10.1029/1999JC900220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, doi:10.1002/qj.49712656406.

  • Raymond, D. J., S. Sessions, A. Sobel, and Z. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (9), doi:10.3894/JAMES.2009.1.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reverdin, G., 1987: The upper equatorial Indian Ocean: The climatological seasonal cycle. J. Phys. Oceanogr., 17, 903927, doi:10.1175/1520-0485(1987)017<0903:TUEIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82, 81100, doi:10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator. High-Resolution Numerical Modeling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 157–185.

    • Crossref
    • Export Citation
  • Schott, F., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, doi:10.1016/S0079-6611(01)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., and Coauthors, 2003: A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res., 108, 4699, doi:10.1029/2002JD003359.

    • Search Google Scholar
    • Export Citation
  • Seo, H., S.-P. Xie, R. Murtugudde, M. Jochum, and A. Miller, 2009: Seasonal effects of Indian Ocean freshwater forcing in a regional coupled model. J. Climate, 22, 65776596, doi:10.1175/2009JCLI2990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian monsoon: An intercomparison of CMIP3 vs CMIP5 simulations of the late 20th century. Climate Dyn., 41, 27112744, doi:10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., and J. D. Neelin, 2002: Teleconnection mechanisms for tropical Pacific descent anomalies during El Niño. J. Atmos. Sci., 59, 26942712, doi:10.1175/1520-0469(2002)059<2694:TMFTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, B., H. Nakamura, M. Nonaka, N. Komori, A. Kuwano-Yoshida, K. Takaya, and A. Goto, 2012: Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: Observations and a coupled model simulation. J. Climate, 25, 111139, doi:10.1175/JCLI-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, A. G., and H. Annamalai, 2012: Climate change and the South Asian summer monsoon. Nat. Climate Change, 2, 587595, doi:10.1038/nclimate1495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. L. Gentemann, D. K. Smith, and D. B. Chelton, 2000: Satellite measurements of sea surface temperature through cloud. Science, 288, 847850, doi:10.1126/science.288.5467.847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, doi:10.1126/science.181.4096.262.

  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, K., 1959: A theory of the Cromwell Current and equatorial upwelling. J. Oceanogr. Soc. Japan, 15, 154170.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 738 214 17
PDF Downloads 424 103 5