Distributions of Tropical Precipitation Cluster Power and Their Changes under Global Warming. Part I: Observational Baseline and Comparison to a High-Resolution Atmospheric Model

Kevin M. Quinn Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Kevin M. Quinn in
Current site
Google Scholar
PubMed
Close
and
J. David Neelin Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. David Neelin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The total amount of precipitation integrated across a precipitation feature (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released (i.e., the power of the disturbance). The probability distribution of cluster power is examined over the tropics using Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite-retrieved rain rates and global climate model output. Observed distributions are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability drops rapidly. After establishing an observational baseline, precipitation from the High Resolution Atmospheric Model (HiRAM) at two horizontal grid spacings (roughly 0.5° and 0.25°) is compared. When low rain rates are excluded by choosing a minimum rain-rate threshold in defining clusters, the model accurately reproduces observed cluster power statistics at both resolutions. Middle and end-of-century cluster power distributions are investigated in HiRAM in simulations with prescribed sea surface temperatures and greenhouse gas concentrations from a “business as usual” global warming scenario. The probability of high cluster power events increases strongly by end of century, exceeding a factor of 10 for the highest power events for which statistics can be computed. Clausius–Clapeyron scaling accounts for only a fraction of the increased probability of high cluster power events.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0683.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin M. Quinn, kquinn@atmos.ucla.edu

Abstract

The total amount of precipitation integrated across a precipitation feature (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released (i.e., the power of the disturbance). The probability distribution of cluster power is examined over the tropics using Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite-retrieved rain rates and global climate model output. Observed distributions are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability drops rapidly. After establishing an observational baseline, precipitation from the High Resolution Atmospheric Model (HiRAM) at two horizontal grid spacings (roughly 0.5° and 0.25°) is compared. When low rain rates are excluded by choosing a minimum rain-rate threshold in defining clusters, the model accurately reproduces observed cluster power statistics at both resolutions. Middle and end-of-century cluster power distributions are investigated in HiRAM in simulations with prescribed sea surface temperatures and greenhouse gas concentrations from a “business as usual” global warming scenario. The probability of high cluster power events increases strongly by end of century, exceeding a factor of 10 for the highest power events for which statistics can be computed. Clausius–Clapeyron scaling accounts for only a fraction of the increased probability of high cluster power events.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0683.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin M. Quinn, kquinn@atmos.ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.35 MB)
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., B. J. Soden, V. O. John, W. Ingram, and P. Good, 2010: Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, doi:10.1088/1748-9326/5/2/025205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., and D. A. Randall, 2015: Global-scale convective aggregation: Implications for the Madden–Julian oscillation. J. Adv. Model. Earth Syst., 7, 14991518, doi:10.1002/2015MS000498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, doi:10.1126/science.1180568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., and Coauthors, 2007: Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81, 7195, doi:10.1007/s10584-006-9226-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. Khairoutdinov, 2015: Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an aquaplanet. J. Adv. Model. Earth Syst., 7, 17651787, doi:10.1002/2015MS000499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, doi:10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and T. Knutson, 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21, 16051621, doi:10.1175/2007JCLI1494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. H., and S. J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, doi:10.1029/2011GL047629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Chagnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, doi:10.1126/science.289.5487.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GFDL, 2015: Global atmospheric models. Accessed 30 November 2015. [Available online at http://www.gfdl.noaa.gov/atmospheric-model.]

  • Gualdi, S., E. Soccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228, doi:10.1175/2008JCLI1921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haensler, A., F. Saeed, and D. Jacob, 2013: Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Climatic Change, 121, 349363, doi:10.1007/s10584-013-0863-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364, doi:10.1175/JCLI-D-11-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., S. J. Woolnough, and G. M. Lister, 2012: Precipitation distributions for explicit versus parametrized convection in a large-domain high-resolution tropical case study. Quart. J. Roy. Meteor. Soc., 138, 16921708, doi:10.1002/qj.1903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hottovy, S., and S. N. Stechmann, 2015: A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J. Atmos. Sci., 72, 47214738, doi:10.1175/JAS-D-15-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410, doi:10.2151/jmsj1965.60.1_396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, doi:10.1002/qj.49711548702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Cambridge University Press, 688 pp. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-PartB_FINAL.pdf.]

  • Kay, G., and R. Washington, 2008: Future southern African summer rainfall variability related to a southwest Indian Ocean dipole in HadCM3. Geophys. Res. Lett., 35, L12701, doi:10.1029/2008GL034180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and K. A. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, doi:10.1002/2013MS000253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, doi:10.1175/JCLI4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. F. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, doi:10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, doi:10.1038/ngeo202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. Sirutis, M. Zhao, R. Tuleya, M. Bender, G. Vecchi, G. Villarini, and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, doi:10.1175/JCLI-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze, 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457, doi:10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, doi:10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., and R. A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981415, doi:10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., R. Milliff, and J. Morzel, 2009: Composite life cycle of maritime tropical mesoscale convective systems in scatterometer and microwave satellite observations. J. Atmos. Sci., 66, 199208, doi:10.1175/2008JAS2746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., M. Zhao, and I. M. Held, 2013: The sensitivity of hurricane frequency to ITCZ changes and radiatively forced warming in aquaplanet simulations. Geophys. Res. Lett., 40, 41094114, doi:10.1002/grl.50680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and I. M. Held, 2012: Detailed Investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 25512565, doi:10.1175/JAS-D-11-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., S. Sahany, S. N. Stechmann, and D. Bernstein, 2017: Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc. Natl. Acad. Sci. USA, 114, 12581263, doi:10.1073/pnas.1615333114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of twenty-first-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, doi:10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto, F. E. L., N. Massey, G. J. van Oldenborgh, R. G. Jones, and M. R. Allen, 2012: Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett., 39, L04702, doi:10.1029/2011GL050422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., J. D. Neelin, and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. J. Atmos. Sci., 66, 29132924, doi:10.1175/2008JAS2761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., A. DeLuca, A. Corral, J. D. Neelin, and C. E. Holloway, 2010: Universality of rain event size distributions. J. Stat. Mech., 11, P11030, doi:10.1088/1742-5468/2010/11/P11030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., K. Christensen, and J. D. Neelin, 2012: Rainfall and Dragon-Kings. Eur. Phys. J. Spec. Top., 205, 147158, doi:10.1140/epjst/e2012-01567-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, K. M., and J. D. Neelin, 2017: Distributions of tropical precipitation cluster power and their changes under global warming. Part II: Long-term time dependence in Coupled Model Intercomparison Project Phase 5 models. J. Climate, 30 (20), 80338044, doi:10.1175/JCLI-D-16-0701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res., 118, 17161733, doi:10.1002/jgrd.50203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013b: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res., 118, 24732493, doi:10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skok, G., J. Bacmeister, and J. Tribbia, 2013: Analysis of tropical cyclone precipitation using an object-based algorithm. J. Climate, 26, 25632579, doi:10.1175/JCLI-D-12-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, D., and A. Aharony, 1994: Introduction to Percolation Theory. 2nd ed. Taylor and Francis, 181 pp.

  • Stechmann, S. N., and J. D. Neelin, 2011: A stochastic model for the transition to strong convection. J. Atmos. Sci., 68, 29552970, doi:10.1175/JAS-D-11-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2014: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci., 71, 32693291, doi:10.1175/JAS-D-13-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., F. Giorgi, J. S. Pal, P. Gibba, I. Kebe, and M. Nikiema, 2015: Projected changes in the annual cycle of high-intensity precipitation events over West Africa for the late twenty-first century. J. Climate, 28, 64756488, doi:10.1175/JCLI-D-14-00854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, W. B. Rossow, and G. Tselioudis, 2015: Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature, 519, 451460, doi:10.1038/nature14339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185211, doi:10.1007/s10584-006-9051-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TRMM, 2015: Tropical Rainfall Measuring Mission (TRMM)(2011), TRMM (TMPA) rainfall estimate L3 3 hour 0.25 degree × 0.25 degree V7. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 1 July 2015. [Available online at https://disc.gsfc.nasa.gov/datacollection/TRMM_3B42_7.html.]

  • Villarini, G., D. Lavers, E. Scoccimarro, M. Zhao, M. Wehner, G. Vecchi, T. Knutson, and K. Reed, 2014: Sensitivity of tropical cyclone rainfall to idealized global scale forcings. J. Climate, 27, 46224641, doi:10.1175/JCLI-D-13-00780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2012: Mid-twenty-first-century changes in extreme events over northern and tropical Africa. J. Climate, 25, 57485767, doi:10.1175/JCLI-D-11-00693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., B.-X. Lin, C.-T. Chen, and S.-H. Lo, 2015: Quantifying the effects of long-term climate change on tropical cyclone rainfall using a cloud-resolving model: Examples of two landfall typhoons in Taiwan. J. Climate, 28, 6685, doi:10.1175/JCLI-D-14-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, doi:10.1126/science.1116448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M., M. Prabhat, K. A. Reed, D. Stone, W. D. Collins, and J. Bacmeister, 2015: Resolution dependence of future tropical cyclone projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group idealized configurations. J. Climate, 28, 39053925, doi:10.1175/JCLI-D-14-00311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, doi:10.1002/2013MS000269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and T. W. Cronin, 2016: Self-aggregation of convection in long channel geometry. Quart. J. Roy. Meteor. Soc., 142, 115, doi:10.1002/qj.2628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 48004816, doi:10.1175/2011JCLI4056.1.

  • Zhao, M., and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 63826393, doi:10.1175/2010JCLI3837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2012: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first-century. J. Climate, 25, 29953009, doi:10.1175/JCLI-D-11-00313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868, doi:10.1175/2010MWR3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 493 127 8
PDF Downloads 330 53 3