Abstract
The total amount of precipitation integrated across a precipitation feature (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released (i.e., the power of the disturbance). The probability distribution of cluster power is examined over the tropics using Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite-retrieved rain rates and global climate model output. Observed distributions are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability drops rapidly. After establishing an observational baseline, precipitation from the High Resolution Atmospheric Model (HiRAM) at two horizontal grid spacings (roughly 0.5° and 0.25°) is compared. When low rain rates are excluded by choosing a minimum rain-rate threshold in defining clusters, the model accurately reproduces observed cluster power statistics at both resolutions. Middle and end-of-century cluster power distributions are investigated in HiRAM in simulations with prescribed sea surface temperatures and greenhouse gas concentrations from a “business as usual” global warming scenario. The probability of high cluster power events increases strongly by end of century, exceeding a factor of 10 for the highest power events for which statistics can be computed. Clausius–Clapeyron scaling accounts for only a fraction of the increased probability of high cluster power events.
Denotes content that is immediately available upon publication as open access.
Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0683.s1.
© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).