A Conceptual Model for the Response of Tropical Rainfall to Orbital Variations

Tobias Bischoff California Institute of Technology, Pasadena, California

Search for other papers by Tobias Bischoff in
Current site
Google Scholar
PubMed
Close
,
Tapio Schneider California Institute of Technology, Pasadena, California, and Swiss Federal Institute of Technology, Zurich, Switzerland

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
, and
Anna Nele Meckler University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Anna Nele Meckler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical rainfall to first order responds to variations in Earth’s orbit through shifts of the intertropical convergence zone (ITCZ) and changes in zonally averaged rainfall intensity. Here, a conceptual model is developed that represents both processes and their response to orbital insolation variations. The model predicts the seasonal evolution of tropical rainfall between 30°S and 30°N. Insolation variations impact seasonal rainfall in two different ways: thermodynamically, leading to variations in rainfall intensity through modulation of the water vapor content of the atmosphere; and dynamically, leading to shifts of the ITCZ through modulation of the global atmospheric energy budget. Thermodynamic and dynamic effects act together to shape the annual-mean response of tropical rainfall to changes in Earth’s orbit. The model successfully reproduces changes in annual-mean rainfall inferred from paleo-proxies across several glacial–interglacial cycles. It illuminates how orbital precession and variations of Earth’s obliquity affect tropical rainfall in distinct ways near the equator and farther away from it, with spectral signatures of precession and obliquity variations that shift with latitude. It also provides explanations for the observed different phasings of rainfall minima and maxima near the equator and away from it. For example, the model reproduces a phase shift of ~10 ka between rainfall records from caves in northern Borneo (4°N) and from China (approximately 30°N). The model suggests that such phase shifts arise through a different weighting of ITCZ shifts and variations in rainfall intensity, thus providing insight into the mechanisms that drive tropical rainfall changes on orbital time scales.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tapio ​​Schneider, tapio@caltech.edu

Abstract

Tropical rainfall to first order responds to variations in Earth’s orbit through shifts of the intertropical convergence zone (ITCZ) and changes in zonally averaged rainfall intensity. Here, a conceptual model is developed that represents both processes and their response to orbital insolation variations. The model predicts the seasonal evolution of tropical rainfall between 30°S and 30°N. Insolation variations impact seasonal rainfall in two different ways: thermodynamically, leading to variations in rainfall intensity through modulation of the water vapor content of the atmosphere; and dynamically, leading to shifts of the ITCZ through modulation of the global atmospheric energy budget. Thermodynamic and dynamic effects act together to shape the annual-mean response of tropical rainfall to changes in Earth’s orbit. The model successfully reproduces changes in annual-mean rainfall inferred from paleo-proxies across several glacial–interglacial cycles. It illuminates how orbital precession and variations of Earth’s obliquity affect tropical rainfall in distinct ways near the equator and farther away from it, with spectral signatures of precession and obliquity variations that shift with latitude. It also provides explanations for the observed different phasings of rainfall minima and maxima near the equator and away from it. For example, the model reproduces a phase shift of ~10 ka between rainfall records from caves in northern Borneo (4°N) and from China (approximately 30°N). The model suggests that such phase shifts arise through a different weighting of ITCZ shifts and variations in rainfall intensity, thus providing insight into the mechanisms that drive tropical rainfall changes on orbital time scales.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tapio ​​Schneider, tapio@caltech.edu
Save
  • Adam, O., T. Bischoff, and T. Schneider, 2016: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J. Climate, 29, 32193230, doi:10.1175/JCLI-D-15-0512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, A., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35, 23622367, doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, A., and M.-F. Loutre, 1991: Insolation values for the climate of the last 10 million years. Quat. Sci. Rev., 10, 297317, doi:10.1016/0277-3791(91)90033-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, doi:10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J. Climate, 29, 29973013, doi:10.1175/JCLI-D-15-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8, 225239, doi:10.1007/BF00198617.

  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and T. Schneider, 2016: Energetic constraints on the width of the intertropical convergence zone. J. Climate, 29, 47094721, doi:10.1175/JCLI-D-15-0767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carolin, S. A., K. M. Cobb, J. F. Adkins, B. Clark, J. L. Conroy, S. Lejau, J. Malang, and A. A. Tuen, 2013: Varied response of western Pacific hydrology to climate forcings over the last glacial period. Science, 340, 15641566, doi:10.1126/science.1233797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carolin, S. A., and Coauthors, 2016: Northern Borneo stalagmite records reveal West Pacific hydroclimate across MIS 5 and 6. Earth Planet. Sci. Lett., 439, 182193, doi:10.1016/j.epsl.2016.01.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, doi:10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H., R. L. Edwards, W. S. Broecker, G. H. Denton, X. Kong, Y. Wang, R. Zhang, and X. Wang, 2009: Ice age terminations. Science, 326, 248252, doi:10.1126/science.1177840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H., A. Sinha, X. Wang, F. W. Cruz, and R. L. Edwards, 2012: The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dyn., 39, 10451062, doi:10.1007/s00382-012-1363-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., A. Hall, and A. J. Broccoli, 2004: The importance of precessional signals in the tropical climate. Climate Dyn., 22, 327341, doi:10.1007/s00382-003-0375-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Cruz, F. W., and Coauthors, 2005: Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434, 6366, doi:10.1038/nature03365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, doi:10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., D. M. Frierson, and D. S. Battisti, 2014: The effect of ocean mixed layer depth on climate in slab ocean aquaplanet experiments. Climate Dyn., 43, 10411055, doi:10.1007/s00382-013-1843-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, doi:10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, doi:10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horne, J. H., and S. L. Baliunas, 1986: A prescription for period analysis of unevenly sampled time series. Astrophys. J., 302, 757763, doi:10.1086/164037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, Y.-H., C. Chou, and K.-Y. Wei, 2010: Land–ocean asymmetry of tropical precipitation changes in the mid-Holocene. J. Climate, 23, 41334151, doi:10.1175/2010JCLI3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huybers, P., and I. Eisenman, 2006: Integrated summer insolation calculations. NOAA/NCDC Paleoclimatology Program, accessed 29 April 2010. [Available online at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/climate_forcing/orbital_variations/huybers2006insolation/huybers2006b.txt.]

  • Huybers, P., and G. Denton, 2008: Antarctic temperature at orbital timescales controlled by local summer duration. Nat. Geosci., 1, 787792, doi:10.1038/ngeo311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joussaume, S., and Coauthors, 1999: Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys. Res. Lett., 26, 859862, doi:10.1029/1999GL900126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khon, V., W. Park, M. Latif, I. Mokhov, and B. Schneider, 2010: Response of the hydrological cycle to orbital and greenhouse gas forcing. Geophys. Res. Lett., 37, L19705, doi:10.1029/2010GL044377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutavas, A., and J. Lynch-Stieglitz, 2004: Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: Regional perspective and global context. The Hadley Circulation: Present, Past, and Future, H. F. Diaz and R. S. Bradley, Eds., Springer, 347–369.

    • Crossref
    • Export Citation
  • Kutzbach, J. E., 1981: Monsoon climate of the early Holocene: Climate experiment with the earth’s orbital parameters for 9000 years ago. Science, 214, 5961, doi:10.1126/science.214.4516.59.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and P. J. Guetter, 1986: The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. J. Atmos. Sci., 43, 17261759, doi:10.1175/1520-0469(1986)043<1726:TIOCOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., X. Liu, Z. Liu, and G. Chen, 2008: Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Climate Dyn., 30, 567579, doi:10.1007/s00382-007-0308-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lisiecki, L. E., and M. E. Raymo, 2005: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and T. Schneider, 2016: Contrasting responses to orbital precession on Titan and Earth. Geophys. Res. Lett., 43, 77747780, doi:10.1002/2016GL070065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2014: Chinese cave records and the East Asia summer monsoon. Quat. Sci. Rev., 83, 115128, doi:10.1016/j.quascirev.2013.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lomb, N. R., 1976: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39, 447462, doi:10.1007/BF00648343.

  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, doi:10.1007/s00382-013-1767-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meckler, A., M. Clarkson, K. Cobb, H. Sodemann, and J. Adkins, 2012: Interglacial hydroclimate in the tropical west Pacific through the Late Pleistocene. Science, 336, 13011304, doi:10.1126/science.1218340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meckler, A., and Coauthors, 2013: Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean. Nature, 495, 495498, doi:10.1038/nature12006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013: Hadley circulation response to orbital precession. Part I: Aquaplanets. J. Climate, 26, 740753, doi:10.1175/JCLI-D-11-00716.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, doi:10.1175/2007JCLI2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Partin, J. W., K. M. Cobb, J. F. Adkins, B. Clark, and D. P. Fernandez, 2007: Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature, 449, 452455, doi:10.1038/nature06164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., D. S. Battisti, K. H. Nisancioglu, and C. M. Bitz, 2011: Chinese stalagmite O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat. Geosci., 4, 474480, doi:10.1038/ngeo1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politis, D. N., and J. P. Romano, 1994: The stationary bootstrap. J. Amer. Stat. Assoc., 89, 13031313, doi:10.1080/01621459.1994.10476870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politis, D. N., and H. White, 2004: Automatic block-length selection for the dependent bootstrap. Econometrics Rev., 23, 5370, doi:10.1081/ETC-120028836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., and G. B. Rybicki, 1989: Fast algorithm for spectral analysis of unevenly sampled data. Astrophys. J., 338, 277280, doi:10.1086/167197.

  • Scargle, J. D., 1982: Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263, 835853, doi:10.1086/160554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, doi:10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tachikawa, K., A. Timmermann, L. Vidal, C. Sonzogni, and O. E. Timm, 2014: CO2 radiative forcing and intertropical convergence zone influences on western Pacific warm pool climate over the past 400 ka. Quat. Sci. Rev., 86, 2434, doi:10.1016/j.quascirev.2013.12.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tigchelaar, M., and A. Timmermann, 2016: Mechanisms rectifying the annual mean response of tropical Atlantic rainfall to precessional forcing. Climate Dyn., 47, 271293, doi:10.1007/s00382-015-2835-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., H. Cheng, R. L. Edwards, Z. S. An, J. Y. Wu, C. C. Shen, and J. A. Dorale, 2001: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294, 23452348, doi:10.1126/science.1064618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2008: Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451, 10901093, doi:10.1038/nature06692.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 569 142 12
PDF Downloads 453 95 5