Distributions of Tropical Precipitation Cluster Power and Their Changes under Global Warming. Part II: Long-Term Time Dependence in Coupled Model Intercomparison Project Phase 5 Models

Kevin M. Quinn Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Kevin M. Quinn in
Current site
Google Scholar
PubMed
Close
and
J. David Neelin Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. David Neelin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Distributions of precipitation cluster power (latent heat release rate integrated over contiguous precipitating pixels) are examined in 1°–2°-resolution members of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate model ensemble. These approximately reproduce the power-law range and large event cutoff seen in observations and the High Resolution Atmospheric Model (HiRAM) at 0.25°–0.5° in Part I. Under the representative concentration pathway 8.5 (RCP8.5) global warming scenario, the change in the probability of the most intense storm clusters appears in all models and is consistent with HiRAM output, increasing by up to an order of magnitude relative to historical climate. For the three models in the ensemble with continuous time series of high-resolution output, there is substantial variability on when these probability increases for the most powerful storm clusters become detectable, ranging from detectable within the observational period to statistically significant trends emerging only after 2050. A similar analysis of National Centers for Environmental Prediction (NCEP)–U.S. Department of Energy (DOE) AMIP-II reanalysis and Special Sensor Microwave Imager and Imager/Sounder (SSM/I and SSMIS) rain-rate retrievals in the recent observational record does not yield reliable evidence of trends in high power cluster probabilities at this time. However, the results suggest that maintaining a consistent set of overlapping satellite instrumentation with improvements to SSM/I–SSMIS rain-rate retrieval intercalibrations would be useful for detecting trends in this important tail behavior within the next couple of decades.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0701.s1.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin M. Quinn, kquinn@atmos.ucla.edu

Abstract

Distributions of precipitation cluster power (latent heat release rate integrated over contiguous precipitating pixels) are examined in 1°–2°-resolution members of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate model ensemble. These approximately reproduce the power-law range and large event cutoff seen in observations and the High Resolution Atmospheric Model (HiRAM) at 0.25°–0.5° in Part I. Under the representative concentration pathway 8.5 (RCP8.5) global warming scenario, the change in the probability of the most intense storm clusters appears in all models and is consistent with HiRAM output, increasing by up to an order of magnitude relative to historical climate. For the three models in the ensemble with continuous time series of high-resolution output, there is substantial variability on when these probability increases for the most powerful storm clusters become detectable, ranging from detectable within the observational period to statistically significant trends emerging only after 2050. A similar analysis of National Centers for Environmental Prediction (NCEP)–U.S. Department of Energy (DOE) AMIP-II reanalysis and Special Sensor Microwave Imager and Imager/Sounder (SSM/I and SSMIS) rain-rate retrievals in the recent observational record does not yield reliable evidence of trends in high power cluster probabilities at this time. However, the results suggest that maintaining a consistent set of overlapping satellite instrumentation with improvements to SSM/I–SSMIS rain-rate retrieval intercalibrations would be useful for detecting trends in this important tail behavior within the next couple of decades.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0701.s1.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin M. Quinn, kquinn@atmos.ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 969.36 KB)
Save
  • Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman, 2001: Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 13771396, doi:10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., B. J. Soden, V. O. John, W. Ingram, and P. Good, 2010: Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, doi:10.1088/1748-9326/5/2/025205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., C. R. Homeyer, and D. G. Stone, 2009: A comparison of oceanic precipitation estimates in the tropics and subtropics. J. Appl. Meteor. Climatol., 48, 13351344, doi:10.1175/2009JAMC2149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., E. E. Ebert, K. J. E. Walsh, and N. E. Davidson, 2013: Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J. Geophys. Res. Atmos., 118, 21842196, doi:10.1002/jgrd.50250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Chagnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, doi:10.1126/science.289.5487.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett., 39, L01702, doi:10.1029/2011GL050087.

  • Hilburn, K. A., and F. J. Wentz, 2008: Mitigating the impact of RADCAL beacon contamination on F15 SSM/I ocean retrievals. Geophys. Res. Lett., 35, L18806, doi:10.1029/2008GL034914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J. and D. T. Blovin, 2014: TRMM and other data precipitation data set documentation. NASA Tech. Rep., 44 pp. [Available online at ftp://meso-a.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.].

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC Ensemble of Global Coupled Model Simulations. J. Climate, 20, 14191444, doi:10.1175/JCLI4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. F. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, doi:10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. Van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, doi:10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., R. Knutti, S. Solomon, and R. W. Portmann, 2011: Early onset of significant local warming in low latitude countries. Environ. Res. Lett., 6, 034009, doi:10.1088/1748-9326/6/3/034009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., R. Milliff, and J. Morzel, 2009: Composite life cycle of maritime tropical mesoscale convective systems in scatterometer and microwave satellite observations. J. Atmos. Sci., 66, 199208, doi:10.1175/2008JAS2746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and R. R. Ferraro, 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall retrievals. J. Geophys. Res., 108, 8382, doi:10.1029/2001JD001512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NSIDC, 2016a: Special Sensor Microwave Imager (SSM/I). Accessed 1 February 2016. [Available online at https://nsidc.org/data/docs/daac/ssmi_instrument.gd.html.]

  • NSIDC, 2016b: Special Sensor Microwave Imager/Sounder (SSMIS). Accessed 1 February 2016. [Available online at https://nsidc.org/data/docs/daac/ssmis_instrument/.]

  • Neelin, J. D., S. Sahany, S. N. Stechmann, and D. Bernstein, 2017: Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc. Natl. Acad. Sci. USA, 114, 61 25861 263, doi:10.1073/pnas.1615333114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., K. A. Reed, and B. Medeiros, 2016: The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophys. Res. Lett., 43, 11 44511 452, doi:10.1002/2016GL071285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., J. D. Neelin, and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. J. Atmos. Sci., 66, 29132924, doi:10.1175/2008JAS2761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., A. DeLuca, A. Corral, J. D. Neelin, and C. E. Holloway, 2010: Universality of rain event size distributions. J. Stat. Mech., 11, P11030, doi:10.1088/1742-5468/2010/11/P11030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., K. Christensen, and J. D. Neelin, 2012: Rainfall and dragon-kings. Eur. Phys. J. Spec. Top., 205, 147158, doi:10.1140/epjst/e2012-01567-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, K., and J. D. Neelin, 2017: Distributions of tropical precipitation cluster power and their changes under global warming. Part I: Observational baseline and comparison to a high-resolution atmospheric model. J. Climate, 30 (20), 80458059, doi:10.1175/JCLI-D-16-0683.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, doi:10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skok, G., J. Bacmeister, and J. Tribbia, 2013: Analysis of tropical cyclone precipitation using an object-based algorithm. J. Climate, 26, 25632579, doi:10.1175/JCLI-D-12-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, N., and F. Weng, 2008: Evaluation of Special Sensor Microwave Imager/Sounder (SSMIS) environmental data records. IEEE Trans. Geosci. Remote Sens., 46, 10061016, doi:10.1109/TGRS.2008.917368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, W. B. Rossow, and G. Tselioudis, 2015: Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature, 519, 451460, doi:10.1038/nature14339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185211, doi:10.1007/s10584-006-9051-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., E. A. Barnes, C. Deser, W. E. Foust, and A. S. Phillips, 2015: Quantifying the role of internal climate variability in future climate trends. J. Climate, 28, 64436456, doi:10.1175/JCLI-D-14-00830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TRMM, 2015: TRMM_3B42: TRMM (TMPA) rainfall estimate L3 3 hour 0.25 degree × 0.25 degree, version 7. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 1 July 2015, https://disc.gsfc.nasa.gov/datacollection/TRMM_3B42_7.html.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Wentz, F. J., 2013: SSM/I version-7 calibration report. Remote Sensing Systems Tech. Rep. 011012, 46 pp. [Available online at http://images.remss.com/papers/rsstech/2012_011012_Wentz_Version-7_SSMI_Calibration.pdf.]

  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 16131627, doi:10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., K. A. Hilburn, and D. K. Smith, 2012: Remote Sensing Systems DMSP SSM/I and SSMIS daily environmental suite on 0.25 deg grid, version 7. Remote Sensing Systems, accessed 1 February 2016. [Available online at www.remss.com/missions/ssmi.]

  • Wood, R., and P. R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 48004816, doi:10.1175/2011JCLI4056.1.

  • Yan, B., and F. Weng, 2008: Intercalibration between special sensor microwave/imager sounder and special sensor microwave imager. IEEE Trans. Geosci. Remote Sens., 46, 984995, doi:10.1109/TGRS.2008.915752.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 516 95 19
PDF Downloads 291 55 3