Global Atmospheric Teleconnections and Multidecadal Climate Oscillations Driven by Southern Ocean Convection

Anna Cabré Department of Physical and Technological Oceanography, Institute of Marine Sciences, Barcelona, Spain, and Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania

Search for other papers by Anna Cabré in
Current site
Google Scholar
PubMed
Close
,
Irina Marinov Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania

Search for other papers by Irina Marinov in
Current site
Google Scholar
PubMed
Close
, and
Anand Gnanadesikan Department of Earth and Planetary Science, Johns Hopkins University, Baltimore, Maryland

Search for other papers by Anand Gnanadesikan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 1000-yr control simulation in a low-resolution coupled atmosphere–ocean model from the Geophysical Fluid Dynamics Laboratory (GFDL) family of climate models shows a natural, highly regular multidecadal oscillation between periods of Southern Ocean (SO) open-ocean convection and nonconvective periods. It is shown here that convective periods are associated with warming of the SO sea surface temperatures (SSTs), and more broadly of the Southern Hemisphere (SH) SSTs and atmospheric temperatures. This SO warming results in a decrease in the meridional gradient of SSTs in the SH, changing the large-scale pressure patterns, reducing the midlatitude baroclinicity and thus the magnitude of the southern Ferrel and Hadley cells, and weakening the SO westerly winds and the SH tropical trade winds. The rearrangement of the atmospheric circulation is consistent with the global energy balance. During convective decades, the increase in incoming top-of-the-atmosphere radiation in the SH is balanced by an increase in the Northern Hemisphere (NH) outgoing radiation. The energy supplying this increase is carried by enhanced atmospheric transport across the equator, as the intertropical convergence zone and associated wind patterns shift southward, toward the anomalously warmer SH. While the critical role of the SO for climate on long, paleoclimate time scales is now beyond debate, the strength and global scale of the teleconnections observed here also suggest an important role for the SO in global climate dynamics on the shorter interannual and multidecadal time scales.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0741.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anna Cabré, cabre@icm.csic.es

Abstract

A 1000-yr control simulation in a low-resolution coupled atmosphere–ocean model from the Geophysical Fluid Dynamics Laboratory (GFDL) family of climate models shows a natural, highly regular multidecadal oscillation between periods of Southern Ocean (SO) open-ocean convection and nonconvective periods. It is shown here that convective periods are associated with warming of the SO sea surface temperatures (SSTs), and more broadly of the Southern Hemisphere (SH) SSTs and atmospheric temperatures. This SO warming results in a decrease in the meridional gradient of SSTs in the SH, changing the large-scale pressure patterns, reducing the midlatitude baroclinicity and thus the magnitude of the southern Ferrel and Hadley cells, and weakening the SO westerly winds and the SH tropical trade winds. The rearrangement of the atmospheric circulation is consistent with the global energy balance. During convective decades, the increase in incoming top-of-the-atmosphere radiation in the SH is balanced by an increase in the Northern Hemisphere (NH) outgoing radiation. The energy supplying this increase is carried by enhanced atmospheric transport across the equator, as the intertropical convergence zone and associated wind patterns shift southward, toward the anomalously warmer SH. While the critical role of the SO for climate on long, paleoclimate time scales is now beyond debate, the strength and global scale of the teleconnections observed here also suggest an important role for the SO in global climate dynamics on the shorter interannual and multidecadal time scales.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0741.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anna Cabré, cabre@icm.csic.es

Supplementary Materials

    • Supplemental Materials (PDF 7.41 MB)
Save
  • Allen, R. J., A. T. Evan, and B. B. B. Booth, 2015: Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Climate, 28, 82198246, doi:10.1175/JCLI-D-15-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernardello, R., I. Marinov, J. B. Palter, E. D. Galbraith, and J. L. Sarmiento, 2014a: Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model. Geophys. Res. Lett., 41, 72627269, doi:10.1002/2014GL061313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernardello, R., I. Marinov, J. B. Palter, J. L. Sarmiento, E. D. Galbraith, and R. D. Slater, 2014b: Response of the ocean natural carbon storage to projected twenty-first-century climate change. J. Climate, 27, 20332053, doi:10.1175/JCLI-D-13-00343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, doi:10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J. Climate, 29, 29973013, doi:10.1175/JCLI-D-15-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., and S. A. Klein, 2010: Comment on “Observational and model evidence for positive low-level cloud feedback.” Science, 329, 277, doi:10.1126/science.1186796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., and A. E. Putnam, 2013: Hydrologic impacts of past shifts of Earth’s thermal equator offer insight into those to be produced by fossil fuel CO2. Proc. Natl. Acad. Sci. USA, 110, 16 71016 715, doi:10.1073/pnas.1301855110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2013: Link between land–ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett., 40, 52235227, doi:10.1002/grl.50971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., C. M. Bitz, and J. C. H. Chiang, 2007: Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation: Mechanisms and impacts. Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 295–314.

    • Crossref
    • Export Citation
  • Chiang, J. C., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, doi:10.1146/annurev-earth-042711-105545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic intertropical convergence zone to Last Glacial Maximum boundary conditions. Paleoceanography, 18, 1094, doi:10.1029/2003PA000916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., W. Cheng, and C. M. Bitz, 2008: Fast teleconnections to the tropical Atlantic sector from Atlantic thermohaline adjustment. Geophys. Res. Lett., 35, L07704, doi:10.1029/2008GL033292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Burgman, and J. R. Norris, 2010: Response to Comment on “Observational and model evidence for positive low-level cloud feedback.” Science, 329, 277, doi:10.1126/science.1187667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., B. M. Buckley, R. D. D’Arrigo, and M. J. Peterson, 2000: Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies. Climate Dyn., 16, 7991, doi:10.1007/s003820050006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., J. B. Palter, E. D. Galbraith, R. Bernardello, and I. Marinov, 2014: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, 4, 278282, doi:10.1038/nclimate2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, doi:10.1175/JCLI-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dethleff, D., 1994: Polynyas as a possible source for enigmatic island atmospheric plumes. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 475–483.

    • Crossref
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, doi:10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, K. Armour, and D. McGee, 2014: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Climate, 27, 33773392, doi:10.1175/JCLI-D-13-00499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., 2015: Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance. Sci. Rep., 5, 14877, doi:10.1038/srep14877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., S. Bordoni, and T. M. Merlis, 2017: Coupled high-latitude climate feedbacks and their impact on atmospheric heat transport. J. Climate, 30, 189201, doi:10.1175/JCLI-D-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, C. M. Bitz, S. Solomon, and A. Plumb, 2015: Antarctic Ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Climate, 28, 12061226, doi:10.1175/JCLI-D-14-00313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, doi:10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, doi:10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., and Coauthors, 2011: Climate variability and radiocarbon in the CM2Mc Earth system model. J. Climate, 24, 42304254, doi:10.1175/2011JCLI3919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallée, H., 1997: Air–sea interactions over Terra Nova Bay during winter: Simulation with a coupled atmosphere–polynya model. J. Geophys. Res., 102, 13 83513 849, doi:10.1029/96JD03098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2016: Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Annu. Rev. Mar. Sci., 8, 7994, doi:10.1146/annurev-marine-122414-033929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295, 12751277, doi:10.1126/science.1065863.

  • Gille, S. T., 2008: Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Climate, 21, 47494765, doi:10.1175/2008JCLI2131.1.

  • Gordon, A. L., 1978: Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr., 8, 600612, doi:10.1175/1520-0485(1978)008<0600:DACWOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1982: Weddell Deep Water variability. J. Mar. Res., 40, 199217.

  • Gordon, A. L., 1991: Two stable modes of Southern Ocean winter stratification. Deep Convection and Deep Water Formation in the Oceans, Elsevier Oceanography Series, Vol. 57, 17–35, doi:10.1016/S0422-9894(08)70058-8.

    • Crossref
    • Export Citation
  • Gordon, A. L., 2014: Oceanography: Southern Ocean polynya. Nat. Climate Change, 4, 249250, doi:10.1038/nclimate2179.

  • Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2016: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dyn., 48, 22792295, doi:10.1007/s00382-016-3205-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helm, K. P., N. L. Bindoff, and J. A. Church, 2010: Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett., 37, L18701, doi:10.1029/2010GL044222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heuze, C., K. J. Heywood, D. P. Stevens, and J. K. Ridley, 2013: Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett., 40, 14091414, doi:10.1002/grl.50287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and M. Zhang, 2014: The implication of radiative forcing and feedback for meridional energy transport. Geophys. Res. Lett., 41, 16651672, doi:10.1002/2013GL059079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, doi:10.1002/grl.50502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., L. M. Polvani, J. C. Fyfe, and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951954, doi:10.1126/science.1202131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, and S. P. Xie, 2014: Contrasting the tropical responses to zonally asymmetric extratropical and tropical thermal forcing. Climate Dyn., 42, 20332043, doi:10.1007/s00382-013-1863-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., R. Seager, and D. M. W. Frierson, 2015: Croll revisited: Why is the Northern Hemisphere warmer than the Southern Hemisphere? Climate Dyn., 44, 14571472, doi:10.1007/s00382-014-2147-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, doi:10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., T. Martin, and W. Park, 2013: Southern Ocean sector centennial climate variability and recent decadal trends. J. Climate, 26, 77677782, doi:10.1175/JCLI-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Quesne, C., C. Acuna, J. A. Boninsegna, A. Rivera, and J. Barichivich, 2009: Long-term glacier variations in the Central Andes of Argentina and Chile, inferred from historical records and tree-ring reconstructed precipitation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 334344, doi:10.1016/j.palaeo.2008.01.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S. P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, doi:10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H., and L. Wu, 2011: Global teleconnections in response to freshening over the Antarctic Ocean. J. Climate, 24, 10711088, doi:10.1175/2010JCLI3634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Saravanan, and P. Chang, 2011: The role of the wind–evaporation–sea surface temperature (WES) feedback as a thermodynamic pathway for the equatorward propagation of high-latitude sea ice-induced cold anomalies. J. Climate, 24, 13501361, doi:10.1175/2010JCLI3455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dyn., 42, 19671979, doi:10.1007/s00382-013-1767-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, T., W. Park, and M. Latif, 2013: Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Climate Dyn., 40, 20052022, doi:10.1007/s00382-012-1586-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, T., W. Park, and M. Latif, 2015: Southern Ocean forcing of the North Atlantic at multi-centennial time scales in the Kiel Climate Model. Deep-Sea Res. II, 114, 3948, doi:10.1016/j.dsr2.2014.01.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., P. D. Killworth, and A. L. Gordon, 1981: A convective model for the Weddell polynya. J. Phys. Oceanogr., 11, 466488, doi:10.1175/1520-0485(1981)011<0466:ACMFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 2016: Can reducing the incoming energy flux over the Southern Ocean in a CGCM improve its simulation of tropical climate? Geophys. Res. Lett., 43, 11 05711 063, doi:10.1002/2016GL071150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, W., and M. Latif, 2008: Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys. Res. Lett., 35, L22703, doi:10.1029/2008GL035779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedro, J. B., T. Martin, E. J. Steig, M. Jochum, W. Park, and S. O. Rasmussen, 2016: Southern Ocean deep convection as a driver of Antarctic warming events. Geophys. Res. Lett., 43, 21922199, doi:10.1002/2016GL067861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, R. G., and W. B. White, 1998: Slow oceanic teleconnections linking the Antarctic Circumpolar Wave with the tropical El Niño–Southern Oscillation. J. Geophys. Res., 103, 24 57324 583, doi:10.1029/98JC01947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26, 61056122, doi:10.1175/JCLI-D-12-00834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, doi:10.1002/2013GL058955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 21032116, doi:10.1175/1520-0442(2002)015<2103:TRTATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, Z. Wang, and T. Roy, 2013: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18301844, doi:10.1002/jgrc.20135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, doi:10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., A. Gnanadesikan, and D. W. Waugh, 2016: The transient response of the Southern Ocean to stratospheric ozone depletion. J. Climate, 29, 73837396, doi:10.1175/JCLI-D-16-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., A. Gnanadesikan, D. W. Waugh, and M. A. Pradal, 2017: Transient response of the Southern Ocean to changing ozone: Regional responses and physical mechanisms. J. Climate, 30, 2463–2480, doi:10.1175/JCLI-D-16-0474.1.

    • Crossref
    • Export Citation
  • Shevenell, A. E., A. E. Ingalls, E. W. Domack, and C. Kelly, 2011: Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature, 470, 250254, doi:10.1038/nature09751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S. W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, doi:10.1126/science.1155939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tett, S. F. B., and Coauthors, 2002: Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res., 107, 4306, doi:10.1029/2000JD000028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, doi:10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10, 107134, doi:10.1007/BF00210625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2002: Accuracy of atmospheric energy budgets from analyses. J. Climate, 15, 33433360, doi:10.1175/1520-0442(2002)015<3343:AOAEBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., J. B. Palter, T. M. Merlis, Y. Huang, and Y. Xia, 2016: Large-scale ocean circulation–cloud interactions reduce the pace of transient climate change. Geophys. Res. Lett., 43, 39353943, doi:10.1002/2016GL067931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Swaluw, E., S. S. Drijfhout, and W. Hazeleger, 2007: Bjerknes compensation at high northern latitudes: The ocean forcing the atmosphere. J. Climate, 20, 60236032, doi:10.1175/2007JCLI1562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., and M. R. Drinkwater, 2001: Sea ice, atmosphere and upper ocean variability in the Weddell Sea, Antarctica. J. Geophys. Res., 106, 16 74716 765, doi:10.1029/2000JC000594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, W. B., and R. G. Peterson, 1996: An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature, 380, 699702, doi:10.1038/380699a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16, 28752889, doi:10.1175/1520-0442(2003)016<2875:OTCIOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., R. Hallberg, and A. Gnanadesikan, 1998: Simulation of density-driven frictional downslope flow in Z-coordinate ocean models. J. Phys. Oceanogr., 28, 21632174, doi:10.1175/1520-0485(1998)028<2163:SODDFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, doi:10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., E. Galbraith, and J. Palter, 2014: Coupled climate impacts of the Drake Passage and the Panama Seaway. Climate Dyn., 43, 3752, doi:10.1007/s00382-013-1809-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X. J., and D. G. Martinson, 2000: Antarctic sea ice extent variability and its global connectivity. J. Climate, 13, 16971717, doi:10.1175/1520-0442(2000)013<1697:ASIEVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X. J., M. A. Cane, and D. G. Martinson, 1996: Cycling around the South Pole. Nature, 380, 673674, doi:10.1038/380673a0.

  • Zanowski, H., R. Hallberg, and J. L. Sarmiento, 2015: Abyssal ocean warming and salinification after Weddell polynyas in the GFDL CM2G coupled climate model. J. Phys. Oceanogr., 45, 27552772, doi:10.1175/JPO-D-15-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624, doi:10.1175/JCLI-D-11-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., S. M. Kang, and I. M. Held, 2010: Sensitivity of climate change induced by the weakening of the Atlantic meridional overturning circulation to cloud feedback. J. Climate, 23, 378389, doi:10.1175/2009JCLI3118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., and W. B. Rossow, 1997: Estimating meridional energy transports by the atmospheric and oceanic general circulations using boundary fluxes. J. Climate, 10, 23582373, doi:10.1175/1520-0442(1997)010<2358:EMETBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1606 318 36
PDF Downloads 988 144 11