Assessing the Role of Hourly Changes in the Occurrence of Daily Extreme Temperatures

Debbie J. Dupuis Department of Decision Sciences, HEC Montréal, Montreal, Quebec, Canada

Search for other papers by Debbie J. Dupuis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observed hourly data from New York City and San Francisco are examined, and the role of hourly changes in the occurrence of daily extreme temperatures is assessed. The tails of the conditional distribution of daily extreme temperatures are modeled with a class of extreme value models that incorporate information on changes in hourly temperature, and location-specific behavior is found. The proposed statistical analyses, which are easily carried out using open-source software, could be used to assess whether the hourly downscaled data necessary for many impact and adaptation studies accurately reproduce the relationship between observed hourly temperatures and daily temperature extremes at a given site.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Debbie J. Dupuis, debbie.dupuis@hec.ca

Abstract

Observed hourly data from New York City and San Francisco are examined, and the role of hourly changes in the occurrence of daily extreme temperatures is assessed. The tails of the conditional distribution of daily extreme temperatures are modeled with a class of extreme value models that incorporate information on changes in hourly temperature, and location-specific behavior is found. The proposed statistical analyses, which are easily carried out using open-source software, could be used to assess whether the hourly downscaled data necessary for many impact and adaptation studies accurately reproduce the relationship between observed hourly temperatures and daily temperature extremes at a given site.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Debbie J. Dupuis, debbie.dupuis@hec.ca
Save
  • Abaurrea, J., J. Asín, A. C. Cebrián, and A. Centelles, 2007: Modeling and forecasting extreme hot events in the central Ebro valley, a continental-Mediterranean area. Global Planet. Change, 57, 4358, doi:10.1016/j.gloplacha.2006.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bee, M., D. J. Dupuis, and L. Trapin, 2015: Realized peaks over threshold: A high-frequency extreme value approach for financial time series. Group for Research in Decision Analysis Rep. G-2015-104, 23 pp.

  • Cebrian, A. C., J. Abaurrea, and J. Asin, 2015: NHPoisson: An R package for fitting and validating nonhomogeneous Poisson processes. J. Stat. Software, 64, 124, doi:10.18637/jss.v064.i06.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez-Demoulin, V., A. C. Davison, and A. J. McNeil, 2005: Estimating value-at-risk: A point process approach. Quant. Finance, 5, 227234, doi:10.1080/14697680500039613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez-Demoulin, V., P. Embrechts, and S. Sardy, 2014: Extreme-quantile tracking for financial time series. J. Econom., 181, 4452, doi:10.1016/j.jeconom.2014.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez-Demoulin, V., P. Embrechts, and M. Hofert, 2016: An extreme value approach for modeling operational risk losses depending on covariates. J. Risk Insur., 83, 735776, doi:10.1111/jori.12059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 209 pp.

    • Crossref
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473, doi:10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, A. C., and R. L. Smith, 1990: Models for exceedances over high thresholds. J. Roy. Stat. Soc., 52B, 393442.

  • Dupuis, D. J., 2012: Modeling waves of extreme temperature: The changing tails of four cities. J. Amer. Stat. Assoc., 107, 2439, doi:10.1080/01621459.2011.643732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekström, M., M. R. Grose, and P. H. Whetton, 2015: An appraisal of downscaling methods used in climate change research. Wiley Interdiscip. Rev.: Climate Change, 6, 301319, doi:10.1002/wcc.339.

    • Search Google Scholar
    • Export Citation
  • Fatichi, S., V. Y. Ivanov, and E. Caporali, 2013: Assessment of a stochastic downscaling methodology in generating an ensemble of hourly future climate time series. Climate Dyn., 40, 18411861, doi:10.1007/s00382-012-1627-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 1999: Regional climate modeling revisited: An introduction to the special issue. J. Geophys. Res., 104, 63356352, doi:10.1029/98JD02072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., M. Raleigh, A. Fisher, and J. D. Lundquist, 2013: A comparison of methods for filling gaps in hourly near-surface air temperature data. J. Hydrometeor., 14, 929945, doi:10.1175/JHM-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2012: Downscaling climate change scenarios for apple pest and disease modeling in Switzerland. Earth Syst. Dyn., 3, 3347, doi:10.5194/esd-3-33-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531, doi:10.1038/nature01675.

  • Maraun, D., and Coauthors, 2015: VALUE: A framework to validate downscaling approaches for climate change studies. Earth’s Future, 3, 114, doi:10.1002/2014EF000259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, J., M. C. Quick, and M. G. G. Foreman, 2002: Climate change in the Fraser River watershed: Flow and temperature projections. J. Hydrol., 263, 230244, doi:10.1016/S0022-1694(02)00065-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mourshed, M., 2011: The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh. Appl. Energy, 88, 37373746, doi:10.1016/j.apenergy.2011.05.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nogaj, M., P. Yiou, S. Parey, F. Malek, and P. Naveau, 2006: Amplitude and frequency of temperature extremes over the North Atlantic region. Geophys. Res. Lett., 33, L10801, doi:10.1029/2005GL024251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, Y., 1978: The asymptotic behaviour of maximum likelihood estimators for stationary point processes. Ann. Inst. Stat. Math., 30, 243261, doi:10.1007/BF02480216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, Y., 1988: Statistical models for earthquake occurrences and residual analysis for point processes. J. Amer. Stat. Assoc., 83, 927, doi:10.1080/01621459.1988.10478560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfaff, B., and A. McNeil, 2014: QRM: Provides R-language code to examine quantitative risk management concepts, version 0.4-10. R package, https://CRAN.R-project.org/package=QRM.

  • Pickands, J., 1975: Statistical inference using extreme order statistics. Ann. Stat., 3, 119131, doi:10.1214/aos/1176343003.

  • Timbal, B., and B. J. McAvaney, 2001: An analogue-based method to downscale surface air temperature: Application for Australia. Climate Dyn., 17, 947963, doi:10.1007/s003820100156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2013: Development of global hourly land surface air temperature datasets. J. Climate, 26, 76767691, doi:10.1175/JCLI-D-12-00682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2015: Global hourly land surface air temperature datasets: Inter-comparison and climate change. Int. J. Climatol., 35, 39593968, doi:10.1002/joc.4257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, G., and Coauthors, 2014: Stochastic model output statistics for bias correcting and downscaling precipitation including extremes. J. Climate, 27, 69406959, doi:10.1175/JCLI-D-13-00604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 333 134 16
PDF Downloads 183 59 3