Distinct Influence of Air–Sea Interactions Mediated by Mesoscale Sea Surface Temperature and Surface Current in the Arabian Sea

Hyodae Seo Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Hyodae Seo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the southwest monsoons, the Arabian Sea (AS) develops highly energetic mesoscale variability associated with the Somali Current (SC), Great Whirl (GW), and cold filaments (CF). The resultant high-amplitude anomalies and gradients of sea surface temperature (SST) and surface currents modify the wind stress, triggering the so-called mesoscale coupled feedbacks. This study uses a high-resolution regional coupled model with a novel coupling procedure that separates spatial scales of the air–sea coupling to show that SST and surface currents are coupled to the atmosphere at distinct spatial scales, exerting distinct dynamic influences. The effect of mesoscale SST–wind interaction is manifested most strongly in wind work and Ekman pumping over the GW, primarily affecting the position of GW and the separation latitude of the SC. If this effect is suppressed, enhanced wind work and a weakened Ekman pumping dipole cause the GW to extend northeastward, delaying the SC separation by 1°. Current–wind interaction, in contrast, is related to the amount of wind energy input. When it is suppressed, especially as a result of background-scale currents, depth-integrated kinetic energy, both the mean and eddy, is significantly enhanced. Ekman pumping velocity over the GW is overly negative because of a lack of vorticity that offsets the wind stress curl, further invigorating the GW. Moreover, significant changes in time-mean SST and evaporation are generated in response to the current–wind interaction, accompanied by a noticeable southward shift in the Findlater Jet. The significant increase in moisture transport in the central AS implies that air–sea interaction mediated by the surface current is a potentially important process for simulation and prediction of the monsoon rainfall.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hyodae Seo, hseo@whoi.edu

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Abstract

During the southwest monsoons, the Arabian Sea (AS) develops highly energetic mesoscale variability associated with the Somali Current (SC), Great Whirl (GW), and cold filaments (CF). The resultant high-amplitude anomalies and gradients of sea surface temperature (SST) and surface currents modify the wind stress, triggering the so-called mesoscale coupled feedbacks. This study uses a high-resolution regional coupled model with a novel coupling procedure that separates spatial scales of the air–sea coupling to show that SST and surface currents are coupled to the atmosphere at distinct spatial scales, exerting distinct dynamic influences. The effect of mesoscale SST–wind interaction is manifested most strongly in wind work and Ekman pumping over the GW, primarily affecting the position of GW and the separation latitude of the SC. If this effect is suppressed, enhanced wind work and a weakened Ekman pumping dipole cause the GW to extend northeastward, delaying the SC separation by 1°. Current–wind interaction, in contrast, is related to the amount of wind energy input. When it is suppressed, especially as a result of background-scale currents, depth-integrated kinetic energy, both the mean and eddy, is significantly enhanced. Ekman pumping velocity over the GW is overly negative because of a lack of vorticity that offsets the wind stress curl, further invigorating the GW. Moreover, significant changes in time-mean SST and evaporation are generated in response to the current–wind interaction, accompanied by a noticeable southward shift in the Findlater Jet. The significant increase in moisture transport in the central AS implies that air–sea interaction mediated by the surface current is a potentially important process for simulation and prediction of the monsoon rainfall.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hyodae Seo, hseo@whoi.edu

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Save
  • Beal, L., and K. Donohue, 2013: The Great Whirl: Observations of its seasonal development and interannual variability. J. Geophys. Res. Oceans, 118, 113, doi:10.1029/2012JC008198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L., V. Hormann, R. Lumpkin, and G. Foltz, 2013: The response of the surface circulation of the Arabian Sea to monsoonal forcing. J. Phys. Oceanogr., 43, 20082022, doi:10.1175/JPO-D-13-033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and K. A. Emanuel, 2009: Annual intensification of the Somali jet in a quasi-equilibrium framework: Observational composites. Quart. J. Roy. Meteor. Soc., 135, 319335, doi:10.1002/qj.388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, P., M. Dengler, A. Rubino, D. Quadfasel, and F. Schott, 2003: Intraseasonal variability in the southwestern Arabian Sea and its relation to the seasonal circulation. Deep-Sea Res. II, 50, 21292141, doi:10.1016/S0967-0645(03)00049-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 2013: Ocean–atmosphere coupling: Mesoscale eddy effects. Nat. Geosci., 6, 594595, doi:10.1038/ngeo1906.

  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land–surface/hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999–10460, Vol. 15, 38 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.]

  • Cleveland, W., 1979: Robust locally weighted regression and smoothing scatterplots. J. Amer. Stat. Assoc., 74, 829836, doi:10.1080/01621459.1979.10481038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1979: A numerical study of Somali Current eddies. J. Phys. Oceanogr., 9, 311326, doi:10.1175/1520-0485(1979)009<0311:ANSOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. Young-Molling, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

  • Dewar, W., and G. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 16531667, doi:10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H. A., and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202211, doi:10.1175/JPO2842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Düing, W., and F. Schott, 1978: Measurements in the source region of the Somali Current during monsoon reversal. J. Phys. Oceanogr., 8, 278289, doi:10.1175/1520-0485(1978)008<0278:MITSRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and H. Dietze, 2009: Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res., 114, C05023, doi:10.1029/2008JC005129.

    • Search Google Scholar
    • Export Citation
  • Evans, R. H., and O. B. Brown, 1981: Propagation of thermal fronts in the Somali Current system. Deep Sea Res., 28A, 521527, doi:10.1016/0198-0149(81)90142-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, J. Godfrey, G. Wick, J. Edson, and G. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, doi:10.1029/95JC03190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: A major low-level air current near the Indian Ocean during the northern summer. Quart. J. Roy. Meteor. Soc., 95, 362380, doi:10.1002/qj.49709540409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, A. S., R. A. Weller, D. L. Rudnick, C. C. Eriksen, C. M. Lee, K. H. Brink, C. A. Fox, and R. R. Leben, 2002: Mesoscale eddies, coastal upwelling, and the upper-ocean heat budget in the Arabian Sea. Deep-Sea Res. II, 49, 22312264, doi:10.1016/S0967-0645(02)00036-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, doi:10.1175/JPO-D-14-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, doi:10.1016/S0377-0265(00)00049-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpern, D., and P. M. Woiceshyn, 2001: Somali jet in the Arabian Sea, El Niño, and India rainfall. J. Climate, 14, 434441, doi:10.1175/1520-0442(2001)014<0434:SJITAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. McC., W. K. Dewar, P. Berloff, S. Kravtsov, and D. K. Hutchinson, 2009: Effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 40664082, doi:10.1175/2009JCLI2629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, D. K., A. M. C. Hogg, and J. R. Blundell, 2010: Southern Ocean response to relative velocity wind stress forcing. J. Phys. Oceanogr., 40, 326339, doi:10.1175/2009JPO4240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., C. de Boyer Montegut, J.-J. Luo, S. K. Behera, S. Masson, and T. Yamagata, 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21, 56035623, doi:10.1175/2008JCLI2158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., 1991: Modeling the seasonal undercurrents in the Somali Current system. J. Geophys. Res., 96, 22 15122 167, doi:10.1029/91JC02383.

  • Jensen, T. G., 1993: Equatorial variability and resonance in a wind-driven Indian Ocean model. J. Geophys. Res., 98, 22 53322 552, doi:10.1029/93JC02565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2005: Internal variability of Indian Ocean SST. J. Climate, 18, 37263738, doi:10.1175/JCLI3488.1.

  • Kindle, J. C., and J. D. Thompson, 1989: The 26- and 50-day oscillations in the western Indian Ocean: Model results. J. Geophys. Res., 94, 47214736, doi:10.1029/JC094iC04p04721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I. Observational aspects. J. Atmos. Sci., 33, 19371954, doi:10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leetmaa, A., D. R. Quadfasel, and D. Wilson, 1982: Development of the flow field during the onset of the Somali Current, 1979. J. Phys. Oceanogr., 12, 13251342, doi:10.1175/1520-0485(1982)012<1325:DOTFFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludec, M., and R. Laprise, 2009: Regional climate model sensitivity to domain size. Climate Dyn., 32, 833854, doi:10.1007/s00382-008-0400-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and G. C. Johnson, 2013: Global ocean surface velocities from drifters: Mean, variance, ENSO response, and seasonal cycle. J. Geophys. Res. Oceans, 118, 29923006, doi:10.1002/jgrc.20210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luther, M. E., and J. J. O’Brien, 1989: Modelling the variability in the Somali Current. Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence, J. C. J. Nihoul and B. M. Jamart, Eds., Elsevier, 373–386.

    • Crossref
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, doi:10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mafimbo, A. J., and C. J. C. Reason, 2010: Air–sea interaction over the upwelling region of the Somali coast. J. Geophys. Res., 115, C01001, doi:10.1029/2009JC005439.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., L. Thomas, and A. Tandon, 2008: Comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms.” Science, 320, 448, doi:10.1126/science.1152111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and R. L. Molinari, 1993: A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr., 31, 181244, doi:10.1016/0079-6611(93)90002-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., and Coauthors, 2007: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 10211026, doi:10.1126/science.1136256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., and A. J. Busalacchi, 1999: Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. J. Climate, 12, 23002326, doi:10.1175/1520-0442(1999)012<2300:IVOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., S. K. Esbensen, N. Thum, R. M. Samelson, and D. B. Chelton, 2010: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559581, doi:10.1175/2009JCLI2662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833838, doi:10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putrasahan, D., A. J. Miller, and H. Seo, 2013a: Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans, 63, 6078, doi:10.1016/j.dynatmoce.2013.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putrasahan, D., A. J. Miller, and H. Seo, 2013b: Regional coupled ocean–atmosphere downscaling in the Southeast Pacific: Impacts on upwelling, mesoscale air–sea fluxes, and ocean eddies. Ocean Dyn., 63, 463488, doi:10.1007/s10236-013-0608-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., F. Giorgi, A. Kaginalkar, and S. Cozzini, 2009: Simulation of the Indian monsoon using the RegCM3–ROMS regional coupled model. Climate Dyn., 33, 119139, doi:10.1007/s00382-008-0433-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemaré, D. Chelton, S. Illig, and A. Hall, 2016a: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, doi:10.1175/JPO-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016b: Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere. J. Climate, 46, 34393453, doi:10.1175/JPO-D-16-0115.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samson, G., and Coauthors, 2014: The NOW regional coupled model: Application to the tropical Indian Ocean climate and tropical cyclone activity. J. Adv. Model. Earth Syst., 6, 700722, doi:10.1002/2014MS000324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlax, M., D. B. Chelton, and M. H. Freilich, 2001: Sampling errors in wind fields constructed from single and tandem scatterometer datasets. J. Atmos. Oceanic Technol., 18, 10141036, doi:10.1175/1520-0426(2001)018<1014:SEIWFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., 1983: Monsoon response of the Somali Current and associated upwelling. Prog. Oceanogr., 12, 357381, doi:10.1016/0079-6611(83)90014-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and D. R. Quadfasel, 1982: Variability of the Somali Current system during the onset of the southwest monsoon, 1979. J. Phys. Oceanogr., 12, 13431357, doi:10.1175/1520-0485(1982)012<1343:VOTSCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, doi:10.1016/S0079-6611(01)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. O. Roads, 2007a: The Scripps Coupled Ocean–Atmosphere Regional (SCOAR) model, with applications in the eastern Pacific sector. J. Climate, 20, 381402, doi:10.1175/JCLI4016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., M. Jochum, R. Murtugudde, A. J. Miller, and J. O. Roads, 2007b: Feedback of tropical instability wave-induced atmospheric variability onto the ocean. J. Climate, 20, 58425855, doi:10.1175/JCLI4330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., R. Murtugudde, M. Jochum, and A. J. Miller, 2008: Modeling of mesoscale coupled ocean–atmosphere interaction and its feedback to ocean in the western Arabian Sea. Ocean Modell., 25, 120131, doi:10.1016/j.ocemod.2008.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., S.-P. Xie, R. Murtugudde, M. Jochum, and A. J. Miller, 2009: Seasonal effects of Indian Ocean freshwater forcing in a regional coupled model. J. Climate, 22, 65776596, doi:10.1175/2009JCLI2990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. C. Subramanian, A. J. Miller, and N. R. Cavanaugh, 2014: Coupled impacts of the diurnal cycle of sea surface temperature on the Madden–Julian oscillation. J. Climate, 27, 84228443, doi:10.1175/JCLI-D-14-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. R. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, doi:10.1175/JPO-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., and F. Giorgi, 1998: The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J. Climate, 11, 26982712, doi:10.1175/1520-0442(1998)011<2698:TEODCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1975: Effect of Arabian Sea–surface temperature anomaly on Indian summer monsoon: A numerical experiment with the GFDL model. J. Atmos. Sci., 32, 503511, doi:10.1175/1520-0469(1975)032<0503:EOASST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., K. J. Richards, S.-P. Xie, P. Dutrieux, and T. Miyama, 2009: Damping of tropical instability waves caused by the action of surface currents on stress. J. Geophys. Res., 114, C04009, doi:10.1029/2008JC005147.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1965: The Gulf Stream. University of California Press, 248 pp.

  • Swallow, J. C., and J. G. Bruce, 1966: Current measurements off the Somali coast during the southwest monsoon of 1964. Deep-Sea Res., 13, 861888, doi:10.1016/0011-7471(76)90908-6.

    • Search Google Scholar
    • Export Citation
  • Swallow, J. C., R. L. Molinari, J. G. Bruce, O. B. Brown, and R. H. Evans, 1983: Development of near-surface flow pattern and water mass distribution in the Somali Basin in response to the southwest monsoon of 1979. J. Phys. Oceanogr., 13, 13981415, doi:10.1175/1520-0485(1983)013<1398:DONSFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., S.-P. Xie, and A. S. Fischer, 2004: Ocean–atmosphere covariability in the western Arabian Sea. J. Climate, 17, 12131224, doi:10.1175/1520-0442(2004)017<1213:OCITWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vic, C., G. Roullet, X. Carton, and X. Capet, 2014: Mesoscale dynamics in the Arabian Sea and a focus on the Great Whirl life cycle: A numerical investigation using ROMS. J. Geophys. Res. Oceans, 119, 64226443, doi:10.1002/2014JC009857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, doi:10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., A. S. Fischer, D. L. Rudnick, C. C. Eriksen, T. D. Dickey, J. Marra, C. A. Fox, and R. R. Leben, 2002: Moored observations of upper-ocean response to the monsoon in the Arabian Sea during 1994–1995. Deep-Sea Res., 49B, 21952230, doi:10.1016/S0967-0645(02)00035-8.

    • Search Google Scholar
    • Export Citation
  • Wirth, A., J. Willebrand, and F. Schott, 2002: Variability of the Great Whirl from observations and models. Deep-Sea Res. II, 49, 12791295, doi:10.1016/S0967-0645(01)00165-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., and R. J. Greatbatch, 2007: Wind work in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 34, L04606, doi:10.1029/2006GL028907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1227 328 15
PDF Downloads 852 159 6