Large-Scale Forcing of the Amundsen Sea Low and Its Influence on Sea Ice and West Antarctic Temperature

Kyle R. Clem School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by Kyle R. Clem in
Current site
Google Scholar
PubMed
Close
,
James A. Renwick School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by James A. Renwick in
Current site
Google Scholar
PubMed
Close
, and
James McGregor School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by James McGregor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using empirical orthogonal function (EOF) analysis and atmospheric reanalyses, the principal patterns of seasonal West Antarctic surface air temperature (SAT) and their connection to sea ice and the Amundsen Sea low (ASL) are examined. During austral summer, the leading EOF (EOF1) explains 35% of West Antarctic SAT variability and consists of a widespread SAT anomaly over the continent linked to persistent sea ice concentration anomalies over the Ross and Amundsen Seas from the previous spring. Outside of summer, EOF1 (explaining ~40%–50% of the variability) consists of an east–west dipole over the continent with SAT anomalies over the Antarctic Peninsula opposite those over western West Antarctica. The dipole is tied to variability in the southern annular mode (SAM) and in-phase El Niño–Southern Oscillation (ENSO)/SAM combinations that influence the depth of the ASL over the central Amundsen Sea (near 105°W). The second EOF (EOF2) during autumn, winter, and spring (explaining ~15%–20% of the variability) consists of a dipole shifted approximately 30° west of EOF1 with a widespread SAT anomaly over the continent. During winter and spring, EOF2 is closely tied to variability in ENSO and a tropically forced wave train that influences the ASL in the western Amundsen/eastern Ross Seas (near 135°W) with an opposite-sign circulation anomaly over the Weddell Sea; the ENSO-related circulation brings anomalous thermal advection deep onto the continent. The authors conclude that the ENSO-only circulation pattern is associated with SAT variability across interior West Antarctica, especially during winter and spring, whereas the SAM circulation pattern is associated with an SAT dipole over the continent.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kyle R. Clem, kyle.clem@vuw.ac.nz

This article is included in the Connecting the Tropics to the Polar Regions Special Collection.

Abstract

Using empirical orthogonal function (EOF) analysis and atmospheric reanalyses, the principal patterns of seasonal West Antarctic surface air temperature (SAT) and their connection to sea ice and the Amundsen Sea low (ASL) are examined. During austral summer, the leading EOF (EOF1) explains 35% of West Antarctic SAT variability and consists of a widespread SAT anomaly over the continent linked to persistent sea ice concentration anomalies over the Ross and Amundsen Seas from the previous spring. Outside of summer, EOF1 (explaining ~40%–50% of the variability) consists of an east–west dipole over the continent with SAT anomalies over the Antarctic Peninsula opposite those over western West Antarctica. The dipole is tied to variability in the southern annular mode (SAM) and in-phase El Niño–Southern Oscillation (ENSO)/SAM combinations that influence the depth of the ASL over the central Amundsen Sea (near 105°W). The second EOF (EOF2) during autumn, winter, and spring (explaining ~15%–20% of the variability) consists of a dipole shifted approximately 30° west of EOF1 with a widespread SAT anomaly over the continent. During winter and spring, EOF2 is closely tied to variability in ENSO and a tropically forced wave train that influences the ASL in the western Amundsen/eastern Ross Seas (near 135°W) with an opposite-sign circulation anomaly over the Weddell Sea; the ENSO-related circulation brings anomalous thermal advection deep onto the continent. The authors conclude that the ENSO-only circulation pattern is associated with SAT variability across interior West Antarctica, especially during winter and spring, whereas the SAM circulation pattern is associated with an SAT dipole over the continent.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kyle R. Clem, kyle.clem@vuw.ac.nz

This article is included in the Connecting the Tropics to the Polar Regions Special Collection.

Save
  • Bracegirdle, T. J., 2013: Climatology and recent increase of westerly winds over the Amundsen Sea derived from six reanalyses. Int. J. Climatol., 33, 843851, doi:10.1002/joc.3473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and G. J. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, doi:10.1175/JCLI-D-11-00685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, doi:10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2013: Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 6, 139145, doi:10.1038/ngeo1671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K. R., and R. L. Fogt, 2015: South Pacific circulation changes and the connection to the tropics and regional Antarctic warming in austral spring 1979–2012. J. Geophys. Res. Atmos., 120, 27732792, doi:10.1002/2014JD022940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K. R., and J. A. Renwick, 2015: Austral spring Southern Hemisphere circulation and temperature changes and links to the SPCZ. J. Climate, 28, 73717384, doi:10.1175/JCLI-D-15-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K. R., J. A. Renwick, J. McGregor, and R. L. Fogt, 2016: The relative influence of ENSO and SAM on Antarctic Peninsula climate. J. Geophys. Res. Atmos., 121, 93249341, doi:10.1002/2016JD025305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and E. J. Steig, 2013: Temperature change on the Antarctic Peninsula linked to the tropical Pacific. J. Climate, 26, 75707585, doi:10.1175/JCLI-D-12-00729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/ngeo1129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, doi:10.1175/JCLI-D-11-00523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, doi:10.1007/s00382-010-0905-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., A. J. Wovrosh, R. A. Langen, and I. Simmonds, 2012a: The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas low. J. Geophys. Res., 117, D07111, doi:10.1029/2011JD017337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., J. M. Jones, and J. A. Renwick, 2012b: Seasonal zonal asymmetries in the southern annular mode and their impact on regional temperature anomalies. J. Climate, 25, 62536270, doi:10.1175/JCLI-D-11-00474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen-Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, doi:10.1175/JCLI-D-12-00813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. M., and Coauthors, 2016a: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Climate Change, 6, 917926, doi:10.1038/nclimate3103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R. W., I. A. Renfrew, A. Orr, B. G. M. Webber, D. M. Holland, and M. A. Lazzara, 2016b: Evaluation of four global reanalysis products using in-situ observations in the Amundsen Sea Embayment, Antarctica: Amundsen Sea reanalyses evaluation. J. Geophys. Res. Atmos., 121, 62406257, doi:10.1002/2015JD024680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252, doi:10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J. C., 1994: Recent climate variability in the vicinity of the Antarctic Peninsula. Int. J. Climatol., 14, 357369, doi:10.1002/joc.3370140402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño / Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, doi:10.1038/nature12945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931951, doi:10.1175/JCLI-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., and D. W. J. Thompson, 2016: The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures. J. Geophys. Res., 121, 32763289, doi:10.1002/2015JD024665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and J. C. King, 2005: Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett., 32, L19604, doi:10.1029/2005GL024042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. N. Paegle, 2001: The Pacific–South American modes and their downstream effects. Int. J. Climatol., 21, 12111229, doi:10.1002/joc.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2014: New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses. J. Climate, 27, 80708093, doi:10.1175/JCLI-D-13-00733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliva, M., F. Navarro, F. Hrbáček, A. Hernández, D. Nývlt, P. Pereira, J. Ruiz-Fernández, and R. Trigo, 2017: Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ., 580, 210223, doi:10.1016/j.scitotenv.2016.12.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orr, A., G. J. Marshall, J. C. R. Hunt, J. Sommeria, C. G. Wang, N. P. M. van Lipzig, D. Cresswell, and J. C. King, 2008: Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds. J. Atmos. Sci., 65, 13961413, doi:10.1175/2007JAS2498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2004: A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett., 31, L23212, doi:10.1029/2004GL020365.

  • Raphael, M. N., and Coauthors, 2016: The Amundsen Sea low: Variability, change, and impact on Antarctic Climate. Bull. Amer. Meteor. Soc., 97, 111121, doi:10.1175/BAMS-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., and E. J. Steig, 2002: Spatial and temporal variability of Antarctic ice sheet microwave brightness temperatures. Geophys. Res. Lett., 29, 1964, doi:10.1029/2002GL015490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., and E. J. Steig, 2008: Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc. Natl. Acad. Sci. USA, 105, 12 15412 158, doi:10.1073/pnas.0803627105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., E. J. Steig, and J. C. Comiso, 2004: Recent climate variability in Antarctica from satellite-derived temperature data. J. Climate, 17, 15691583, doi:10.1175/1520-0442(2004)017<1569:RCVIAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. Deser, and Y. Okumura, 2012: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38, 323347, doi:10.1007/s00382-010-0985-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., L. M. Ciasto, D. W. J. Thompson, and M. H. England, 2012: Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J. Climate, 25, 54515469, doi:10.1175/JCLI-D-11-00367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to ENSO and southern annular mode variability. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462, doi:10.1038/nature07669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2005: Antarctic climate change during the last 50 years. Int. J. Climatol., 25, 279294, doi:10.1002/joc.1130.

  • Turner, J., T. Phillips, J. S. Hosking, G. J. Marshall, and A. Orr, 2013a: The Amundsen Sea low. Int. J. Climatol., 33, 18181829, doi:10.1002/joc.3558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Maksym, T. Phillips, G. J. Marshall, and M. P. Meredith, 2013b: The impacts of changes in sea ice advance on the large winter warming on the western Antarctic Peninsula. Int. J. Climatol., 33, 852861, doi:10.1002/joc.3474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2016: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411415, doi:10.1038/nature18645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., G. J. Marshall, W. M. Connolley, J. C. King, and R. Mulvaney, 2001: Climate change—Devil in the detail. Science, 293, 17771779, doi:10.1126/science.1065116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., and Coauthors, 2003: Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243274, doi:10.1023/A:1026021217991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 676 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2169 496 34
PDF Downloads 1214 311 15