The Response of the Southern Hemisphere Middle Atmosphere to the Madden–Julian Oscillation during Austral Winter Using the Specified-Dynamics Whole Atmosphere Community Climate Model

Chengyun Yang Chinese Academy of Sciences Key Laboratory of Geospace Environment, and Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Chengyun Yang in
Current site
Google Scholar
PubMed
Close
,
Tao Li Chinese Academy of Sciences Key Laboratory of Geospace Environment, and Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

Search for other papers by Tao Li in
Current site
Google Scholar
PubMed
Close
,
Anne K. Smith National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Anne K. Smith in
Current site
Google Scholar
PubMed
Close
, and
Xiankang Dou Chinese Academy of Sciences Key Laboratory of Geospace Environment, and Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

Search for other papers by Xiankang Dou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using the specified-dynamics (SD) Whole Atmosphere Community Climate Model (SD-WACCM), the effects of the Madden–Julian oscillation (MJO) on the midwinter stratosphere and mesosphere in the Southern Hemisphere (SH) are investigated. The most significant responses of the SH polar cap temperature to the MJO are found about 30 days after MJO phase 1 (P1) and about 10 days after MJO phase 5 (P5) in both the ERA-Interim data and the SD-WACCM simulation. The 200- and 500-hPa geopotential height anomalies in the SH reveal that wave trains emanate from the Indian and Pacific Oceans when the MJO convection is enhanced in the eastern Indian Ocean and the western Pacific. As a result, the upward propagation and dissipation of planetary waves (PWs) in the middle and high latitudes of the SH stratosphere is significantly enhanced, the Brewer–Dobson (BD) circulation in the SH stratosphere strengthens, and temperatures in the SH polar stratosphere increase. Wavenumber 1 in the stratosphere is the dominant component of the PW perturbation induced by the MJO convection. In the SH mesosphere, the MJO leads to enhancement of the dissipation and breaking of gravity waves (GWs) propagating as a result of wind-filtering change in the SH extratropics and causes anomalous downwelling in the middle and high latitudes of the mesosphere. The circulation thus changes significantly, resulting in anomalous cooling in the mesosphere in response to MJO P1 and P5 at lags of 10 and 30 days, respectively.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: X. Dou, dou@ustc.edu.cn

Abstract

Using the specified-dynamics (SD) Whole Atmosphere Community Climate Model (SD-WACCM), the effects of the Madden–Julian oscillation (MJO) on the midwinter stratosphere and mesosphere in the Southern Hemisphere (SH) are investigated. The most significant responses of the SH polar cap temperature to the MJO are found about 30 days after MJO phase 1 (P1) and about 10 days after MJO phase 5 (P5) in both the ERA-Interim data and the SD-WACCM simulation. The 200- and 500-hPa geopotential height anomalies in the SH reveal that wave trains emanate from the Indian and Pacific Oceans when the MJO convection is enhanced in the eastern Indian Ocean and the western Pacific. As a result, the upward propagation and dissipation of planetary waves (PWs) in the middle and high latitudes of the SH stratosphere is significantly enhanced, the Brewer–Dobson (BD) circulation in the SH stratosphere strengthens, and temperatures in the SH polar stratosphere increase. Wavenumber 1 in the stratosphere is the dominant component of the PW perturbation induced by the MJO convection. In the SH mesosphere, the MJO leads to enhancement of the dissipation and breaking of gravity waves (GWs) propagating as a result of wind-filtering change in the SH extratropics and causes anomalous downwelling in the middle and high latitudes of the mesosphere. The circulation thus changes significantly, resulting in anomalous cooling in the mesosphere in response to MJO P1 and P5 at lags of 10 and 30 days, respectively.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: X. Dou, dou@ustc.edu.cn
Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Carvalho, L. M. V., C. Jones, and T. Ambrizzi, 2005: Opposite phases of the Antarctic Oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer. J. Climate, 18, 702718, doi:10.1175/JCLI-3284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60-day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, doi:10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., S. B. Feldstein, D. W. Waugh, C. Yoo, and S. Lee, 2012: Observed connection between stratospheric sudden warmings and the Madden–Julian oscillation. Geophys. Res. Lett., 39, L18807, doi:10.1029/2012GL053144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., J. J. Benedict, and E. D. Maloney, 2014: Impact of the MJO on the boreal winter extratropical circulation. Geophys. Res. Lett., 41, 60556062, doi:10.1002/2014GL061094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J.-K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820, doi:10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., I.-S. Song, L. D. Oman, P. A. Newman, A. M. Molod, S. M. Frith, and J. E. Nielsen, 2011a: Events response of the Antarctic stratosphere to warm pool El Niño events in the GEOS CCM. Atmos. Chem. Phys., 11, 96599669, doi:10.5194/acp-11-9659-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., P. A. Newman, L. D. Oman, and A. M. Molod, 2011b: Response of the Antarctic stratosphere to two types of El Niño events. J. Atmos. Sci., 68, 812822, doi:10.1175/2011JAS3606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., and J.-K. E. Schemm, 2000: The influence of intraseasonal variations on medium- to extended-range weather forecasts over South America. Mon. Wea. Rev., 128, 486494, doi:10.1175/1520-0493(2000)128<0486:TIOIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, A., L. Pan, P. Konopka, D. Kinnison, and S. Tilmes, 2011: Chemical and dynamical discontinuity at the extratropical tropopause based on START08 and WACCM analyses. J. Geophys. Res., 116, D24302, doi:10.1029/2011JD016686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., and K. Kodera, 2001: Variability of the polar night jet in the Northern and Southern Hemispheres. J. Geophys. Res., 106, 20 70320 713, doi:10.1029/2001JD900226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, K.-F., B. Tian, K.-K. Tung, L. Kuai, J. R. Worden, Y. L. Yung, and B. L. Slawski, 2013: A link between tropical intraseasonal variability and Arctic stratospheric ozone. J. Geophys. Res. Atmos., 118, 42804289, doi:10.1002/jgrd.50391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., N. Calvo, J. Yue, X. Dou, J. M. Russell, M. G. Mlynczak, C.-Y. She, and X. Xue, 2013: Influence of El Niño-Southern Oscillation in the mesosphere. Geophys. Res. Lett., 40, 32923296, doi:10.1002/grl.50598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and Coauthors, 2016: Southern Hemisphere summer mesopause responses to El Niño–Southern Oscillation. J. Climate, 29, 63196328, doi:10.1175/JCLI-D-15-0816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, doi:10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, doi:10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and M. P. Meredith, 2004: Variability of Antarctic circumpolar transport and the southern annular mode associated with the Madden–Julian oscillation. Geophys. Res. Lett., 31, L24312, doi:10.1029/2004GL021666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, A. J., S. Zhou, and S. K. Yang, 2003: Relationship of the Arctic and Antarctic Oscillations to the outgoing longwave radiation. J. Climate, 16, 15831592, doi:10.1175/1520-0442-16.10.1583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, A. C., C. J. Wright, and N. J. Mitchell, 2016: Does the Madden–Julian oscillation modulate stratospheric gravity waves? Geophys. Res. Lett., 43, 39733981, doi:10.1002/2016GL068498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, R. R. Garcia, K. Matthes, and C. A. Fischer, 2008: Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3). J. Geophys. Res., 113, D08101, doi:10.1029/2007JD009269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., D. E. Waliser, B. Tian, D. L. Wu, J. H. Jiang, and W. G. Read, 2008: Characterization of MJO-related upper tropospheric hydrological processes using MLS. Geophys. Res. Lett., 35, L08812, doi:10.1029/2008GL033675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and S.-W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, doi:10.1175/2011JAS3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., N. M. Pedatella, D. R. Marsh, and T. Matsuo, 2017: On the dynamical control of the mesosphere–lower thermosphere by the lower and middle atmosphere. J. Atmos. Sci., 74, 933947, doi:10.1175/JAS-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., and Coauthors, 2008: Does the Madden–Julian oscillation influence aerosol variability? J. Geophys. Res., 113, D12215, doi:10.1029/2007JD009372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, doi:10.1175/BAMS-84-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, doi:10.1007/BF01026810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Mechanisms of extratropical surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, doi:10.1175/JCLI-D-11-00566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagar, N., and C. L. E. Franzke, 2015: Systematic decomposition of the Madden–Julian oscillation into balanced and inertio-gravity components. Geophys. Res. Lett., 42, 68296835, doi:10.1002/2015GL065130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zubiaurre, I., and N. Calvo, 2012: The El Niño–Southern Oscillation (ENSO) Modoki signal in the stratosphere. J. Geophys. Res., 117, D04104, doi:10.1029/2011JD016690.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 460 133 7
PDF Downloads 329 68 7