Effect of Indian Ocean SST on Tibetan Plateau Precipitation in the Early Rainy Season

Xiaoyang Chen Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiaoyang Chen in
Current site
Google Scholar
PubMed
Close
and
Qinglong You Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Qinglong You in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The onset of the South Asian summer monsoon (SASM) indicates the beginning of the rainy season in the South Asia region. It is not only critical for the local agriculture and animal husbandry but also important for water and life security. Precipitation in the early rainy season (May) increases rapidly and has a large interannual variability, especially in the Tibetan Plateau (TP) region. One of the starting mechanisms of the monsoon system is the land–sea thermal contrast (LSTC) between the Indian Ocean (IO) and South Asia region. Therefore, the IO can be considered as a crucial factor for the intensity of the monsoon system, as well as the TP precipitation. In this study, the relationships between IO sea surface temperature (SST) and TP precipitation on the interannual time scale are investigated. Correlation maps show that IO SST variability contains a portion that is independent from the tropical Pacific Ocean SST and is negatively correlated with the TP precipitation. Here the authors define an LSTC index to determine the thermal condition over the IO and South Asia region. The SASM reveals an out-of-phase relationship with LSTC between land and ocean, which means it would be suppressed by the enhanced LSTC. The daily data are used to further analyze the relationship between the SASM and TP precipitation in detail. Results show that the anomalous TP precipitation in May is mainly caused by the Bay of Bengal monsoon and that the Indian monsoon is responsible for the TP precipitation in June. More specifically, warmer SST enlarges the LSTC between the IO and South Asia region. The SASM is weaker than the mean state, resulting in less precipitation over the TP. In negative years the opposite occurs.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Qinglong You, yqingl@126.com

Abstract

The onset of the South Asian summer monsoon (SASM) indicates the beginning of the rainy season in the South Asia region. It is not only critical for the local agriculture and animal husbandry but also important for water and life security. Precipitation in the early rainy season (May) increases rapidly and has a large interannual variability, especially in the Tibetan Plateau (TP) region. One of the starting mechanisms of the monsoon system is the land–sea thermal contrast (LSTC) between the Indian Ocean (IO) and South Asia region. Therefore, the IO can be considered as a crucial factor for the intensity of the monsoon system, as well as the TP precipitation. In this study, the relationships between IO sea surface temperature (SST) and TP precipitation on the interannual time scale are investigated. Correlation maps show that IO SST variability contains a portion that is independent from the tropical Pacific Ocean SST and is negatively correlated with the TP precipitation. Here the authors define an LSTC index to determine the thermal condition over the IO and South Asia region. The SASM reveals an out-of-phase relationship with LSTC between land and ocean, which means it would be suppressed by the enhanced LSTC. The daily data are used to further analyze the relationship between the SASM and TP precipitation in detail. Results show that the anomalous TP precipitation in May is mainly caused by the Bay of Bengal monsoon and that the Indian monsoon is responsible for the TP precipitation in June. More specifically, warmer SST enlarges the LSTC between the IO and South Asia region. The SASM is weaker than the mean state, resulting in less precipitation over the TP. In negative years the opposite occurs.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Qinglong You, yqingl@126.com
Save
  • Abatzoglou, J. T., and R. Barbero, 2014: Observed and projected changes in absolute temperature records across the contiguous United States. Geophys. Res. Lett., 41, 65016508, doi:10.1002/2014GL061441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothe, O., K. Fraedrich, and X. Zhu, 2012: Tibetan Plateau summer precipitation: Covariability with circulation indices. Theor. Appl. Climatol., 108, 293300, doi:10.1007/s00704-011-0538-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. Van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, doi:10.1175/2011JCLI4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherchi, A., S. Gualdi, S. Behera, J. J. Luo, S. Masson, T. Yamagata, and A. Navarra, 2007: The influence of tropical Indian Ocean SST on the Indian summer monsoon. J. Climate, 20, 30833105, doi:10.1175/JCLI4161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, doi:10.1175/JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and S. P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, 193202, doi:10.1029/2008GL033631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, L., and T. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res., 117, D20114, doi:10.1029/2011JD017012.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: A major low‐level air current near the Indian Ocean during the northern summer. Quart. J. Roy. Meteor. Soc., 95, 362380, doi:10.1002/qj.49709540409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. Cuo, and Y. Zhang, 2014: Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J. Climate, 27, 18761893, doi:10.1175/JCLI-D-13-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and R. S. Ajaya Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, doi:10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2010: Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci., 3, 546550, doi:10.1038/ngeo901.

  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I. Observational aspects. J. Atmos. Sci., 33, 19371954, doi:10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and K. M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33, L21810, doi:10.1029/2006GL027546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855864, doi:10.1007/s00382-006-0114-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, doi:10.1038/ngeo2438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358375, doi:10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., J. Peng, and Y. Shen, 2012: Development of China homogenized monthly precipitation dataset during 1900–2009. J. Geogr. Sci., 22, 579593, doi:10.1007/s11442-012-0948-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., Y. Zhang, C. P. Chang, and B. Wang, 2001: On the relationship between Indian Ocean sea surface temperature and Asian summer monsoon. Geophys. Res. Lett., 28, 28432846, doi:10.1029/2000GL011847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., Q. You, Y. Zhang, Y. Jiao, and K. Fraedrich, 2016: Impact of large‐scale circulation on the water vapour balance of the Tibetan Plateau in summer. Int. J. Climatol., 36, 42134221, doi:10.1002/joc.4626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., G. Wu, J. Mao, and J. He, 2013: Genesis of the South Asian high and its impact on the Asian summer monsoon onset. J. Climate, 26, 29762991, doi:10.1175/JCLI-D-12-00286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., K. Duan, M. Li, P. Shi, J. Yang, X. Zhang, and J. Sun, 2015: Impact of the North Atlantic Oscillation on the dipole oscillation of summer precipitation over the central and eastern Tibetan Plateau. Int. J. Climatol., 35, 45394546, doi:10.1002/joc.4304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Z.-Y. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Climate, 14, 28962909, doi:10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., J. C. L. Chan, and G. Wu, 2004: Relationship between the onset of the South China Sea summer monsoon and the structure of the Asian subtropical anticyclone. J. Meteor. Soc. Japan, 82, 845859, doi:10.2151/jmsj.2004.845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, T., 1987: Effects of the Tibetan Plateau. Monsoon Meteorology, C. Chang and T. Krishnamurti, Eds., Oxford University Press, 235–270.

  • Rai, A., S. K. Saha, S. Pokhrel, K. Sujith, and S. Halder, 2015: Influence of preonset land atmospheric conditions on the Indian summer monsoon rainfall variability. J. Geophys. Res. Atmos., 120, 45514563, doi:10.1002/2015JD023159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, and C. Schär, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, doi:10.1175/2008JCLI2625.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Wang, B., 2006: The Asian Monsoon. Springer, 845 pp.

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, X. Rong, and T. Li, 2014: Impact of Indian summer monsoon on the South Asian high and its influence on summer rainfall over China. Climate Dyn., 43, 12571269, doi:10.1007/s00382-013-1938-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., and Y. Liu, 2016: Impacts of the Tibetan Plateau on Asian climate. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., 7.1–7.29, doi:10.1175/AMSMONOGRAPHS-D-15-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., Y. Liu, B. He, Q. Bao, A. Duan, and F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404.

  • Xie, S. P., J. Hafner, H. Tokinaga, Y. Du, T. Sampe, K. M. Hu, and G. Huang, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, N., J. Li, and L. Wang, 2015: Effect of the early and late onset of summer monsoon over the Bay of Bengal on Asian precipitation in May. Climate Dyn., 4, 19611970, doi:10.1007/s00382-015-2944-z.

    • Search Google Scholar
    • Export Citation
  • Xu, X., C. Lu, X. Shi, and S. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, 525530, doi:10.1029/2008GL035867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., T. Gong, and J. Li, 2008: Decadal trend of climate in the Tibetan Plateau—regional temperature and precipitation. Hydrol. Processes, 22, 30563065, doi:10.1002/hyp.6892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., C. Fu, and Y. Qian, 2009: Relative roles of land–sea distribution and orography in Asian monsoon intensity. J. Atmos. Sci., 66, 27142729, doi:10.1175/2009JAS3053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351, doi:10.2151/jmsj1965.70.1B_319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S. P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, and Z. Liu, 2010: Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode. J. Climate, 23, 58895902, doi:10.1175/2010JCLI2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, doi:10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q., J. Min, W. Zhang, N. Pepin, and S. Kang, 2015: Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Climate Dyn., 45, 791806, doi:10.1007/s00382-014-2310-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., T. Tozuka, T. Miyasaka, and T. Yamagata, 2009: Respective influences of IOD and ENSO on the Tibetan snow cover in early winter. Climate Dyn., 33, 509520, doi:10.1007/s00382-008-0495-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X. T., S. P. Xie, and Q. Liu, 2011: Response of the Indian Ocean basin mode and its capacitor effect to global warming. J. Climate, 24, 61466164, doi:10.1175/2011JCLI4169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1609 846 22
PDF Downloads 969 167 11