Interpretation of Factors Controlling Low Cloud Cover and Low Cloud Feedback Using a Unified Predictive Index

Hideaki Kawai Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Search for other papers by Hideaki Kawai in
Current site
Google Scholar
PubMed
Close
,
Tsuyoshi Koshiro Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Search for other papers by Tsuyoshi Koshiro in
Current site
Google Scholar
PubMed
Close
, and
Mark J. Webb Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Mark J. Webb in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper reports on a new index for low cloud cover (LCC), the estimated cloud-top entrainment index (ECTEI), which is a modification of estimated inversion strength (EIS) and takes into account a cloud-top entrainment (CTE) criterion. Shipboard cloud observation data confirm that the index is strongly correlated with LCC. It is argued here that changes in LCC cannot be fully determined from changes in EIS only, but can be better determined from changes in both EIS and sea surface temperature (SST) based on the ECTEI. Furthermore, it is argued that various proposed predictors of LCC change, including the moist static energy vertical gradient, SST, and midlevel clouds, can be better understood from the perspective of the ECTEI.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hideaki Kawai, h-kawai@mri-jma.go.jp

Abstract

This paper reports on a new index for low cloud cover (LCC), the estimated cloud-top entrainment index (ECTEI), which is a modification of estimated inversion strength (EIS) and takes into account a cloud-top entrainment (CTE) criterion. Shipboard cloud observation data confirm that the index is strongly correlated with LCC. It is argued here that changes in LCC cannot be fully determined from changes in EIS only, but can be better determined from changes in both EIS and sea surface temperature (SST) based on the ECTEI. Furthermore, it is argued that various proposed predictors of LCC change, including the moist static energy vertical gradient, SST, and midlevel clouds, can be better understood from the perspective of the ECTEI.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hideaki Kawai, h-kawai@mri-jma.go.jp
Save
  • Betts, A. K., and R. Boers, 1990: A cloudiness transition in a marine boundary layer. J. Atmos. Sci., 47, 14801497, doi:10.1175/1520-0469(1990)047<1480:ACTIAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and Coauthors, 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst., 5, 234258, doi:10.1002/jame.20025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst., 6, 91114, doi:10.1002/2013MS000250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977, doi:10.1175/BAMS-85-7-967.

  • Brient, F., and S. Bony, 2013: Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Climate Dyn., 40, 24152431, doi:10.1007/s00382-011-1279-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, doi:10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., C. W. Fairall, D. E. Wolfe, L. Bariteau, and P. Zuidema, 2010: Surface flux observations on the southeastern tropical Pacific Ocean and attribution of SST errors in coupled ocean–atmosphere models. J. Climate, 23, 41524174, doi:10.1175/2010JCLI3411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., 1993: The stability of cloud top with regard to entrainment: Amendment of the theory of cloud-top entrainment instability. J. Atmos. Sci., 50, 495502, doi:10.1175/1520-0469(1993)050<0495:TSOCTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 2009: Extended edited synoptic cloud reports from ships and land stations over the globe, 1952–1996 (2009 update). NDP-026C, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, doi:10.3334/CDIAC/cli.ndp026c.

    • Crossref
    • Export Citation
  • Kawai, H., 2012: Examples of mechanisms for negative cloud feedback of stratocumulus and stratus in cloud parameterizations. SOLA, 8, 150154, doi:10.2151/sola.2012-037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawai, H., 2013: Improvement of a stratocumulus scheme for mid-latitude marine low clouds. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling/WMO, 43, 4.03–4.04, https://www.wcrp-climate.org/WGNE/BlueBook/2013/individual-articles/04_Kawai_Hideaki_ResActWGNE2013b.pdf.

  • Kawai, H., and J. Teixeira, 2010: Probability density functions of liquid water path and cloud amount of marine boundary layer clouds: Geographical and seasonal variations and controlling meteorological factors. J. Climate, 23, 20792092, doi:10.1175/2009JCLI3070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshiro, T., and M. Shiotani, 2014: Relationship between low stratiform cloud amount and estimated inversion strength in the lower troposphere over the global ocean in terms of cloud types. J. Meteor. Soc. Japan, 92, 107120, doi:10.2151/jmsj.2014-107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. E. Waliser, and J. L. Li, 2011: Boundary layer and cloud structure controls on tropical low cloud cover using A-Train satellite data and ECMWF analyses. J. Climate, 24, 194215, doi:10.1175/2010JCLI3702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., and W. H. Schubert, 1988: Stability of cloud-topped boundary layers. Quart. J. Roy. Meteor. Soc., 114, 887916, doi:10.1002/qj.49711448204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., 2009: Factors influencing cloud area at the capping inversion for shallow cumulus clouds. Quart. J. Roy. Meteor. Soc., 135, 941952, doi:10.1002/qj.424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacVean, M. K., 1993: A numerical investigation of the criterion for cloud-top entrainment instability. J. Atmos. Sci., 50, 24812495, doi:10.1175/1520-0469(1993)050<2481:ANIOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacVean, M. K., and P. J. Mason, 1990: Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. J. Atmos. Sci., 47, 10121030, doi:10.1175/1520-0469(1990)047<1012:CTEITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climatic change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, doi:10.1175/JCLI-D-12-00736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2015: On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. J. Climate, 28, 29452967, doi:10.1175/JCLI-D-14-00475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2016: Reducing the uncertainty in subtropical cloud feedback. Geophys. Res. Lett., 43, 21442148, doi:10.1002/2015GL067416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2014: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dyn., 42, 26032626, doi:10.1007/s00382-013-1945-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2015a: The strength of the tropical inversion and its response to climate change in 18 CMIP5 models. Climate Dyn., 45, 375396, doi:10.1007/s00382-014-2441-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and A. M. DeAngelis, 2015b: Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett., 42, 77677775, doi:10.1002/2015GL065627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, doi:10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seethala, C., J. R. Norris, and T. A. Myers, 2015: How has subtropical stratocumulus and associated meteorology changed since the 1980s? J. Climate, 28, 83968410, doi:10.1175/JCLI-D-15-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van der Dussen, J. J., S. R. de Roode, S. D. Gesso, and A. P. Siebesma, 2015: An LES model study of the influence of the free tropospheric thermodynamic conditions on the stratocumulus response to a climate perturbation. J. Adv. Model. Earth Syst., 7, 670691, doi:10.1002/2014MS000380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and A. P. Lock, 2013: Coupling between subtropical cloud feedback and the local hydrological cycle in a climate model. Climate Dyn., 41, 19231939, doi:10.1007/s00382-012-1608-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., F. H. Lambert, and J. M. Gregory, 2013: Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dyn., 40, 677707, doi:10.1007/s00382-012-1336-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2015: The impact of parametrized convection on cloud feedback. Philos. Trans. Roy. Soc., 373A, 20140414, doi:10.1098/rsta.2014.0414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, doi:10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and D. A. Randall, 2008: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci., 65, 14811504, doi:10.1175/2007JAS2438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Coauthors, 2013: CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. J. Adv. Model. Earth Syst., 5, 826842, doi:10.1002/2013MS000246.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2215 614 39
PDF Downloads 1275 252 17