Clustering of Observed Diurnal Cycles of Precipitation over the United States for Evaluation of a WRF Multiphysics Regional Climate Ensemble

P. A. Mooney National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by P. A. Mooney in
Current site
Google Scholar
PubMed
Close
,
C. Broderick Department of Geography, Maynooth University, Kildare, Ireland

Search for other papers by C. Broderick in
Current site
Google Scholar
PubMed
Close
,
C. L. Bruyère National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by C. L. Bruyère in
Current site
Google Scholar
PubMed
Close
,
F. J. Mulligan Department of Experimental Physics, Maynooth University, Kildare, Ireland

Search for other papers by F. J. Mulligan in
Current site
Google Scholar
PubMed
Close
, and
A. F. Prein National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. F. Prein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The diurnal cycle of precipitation during the summer season over the contiguous United States is examined in eight distinct regions. These were identified using cluster analysis applied to the diurnal cycle characteristics at 2141 rainfall gauges over the 10-yr period 1991–2000. Application of the clustering technique provides a physically meaningful way of identifying regions for comparison of model results with observations. The diurnal cycle for each region is specified in terms of 1) total precipitation, 2) frequency of precipitation occurrence, and 3) intensity of precipitation per occurrence on an hourly basis averaged over the 10-yr period. The amplitude and phase of each element of the diurnal cycle was obtained from harmonic analysis and has been compared with the results of a 24-member multiphysics ensemble of simulations produced by the Weather Research and Forecast (WRF) Model on a region-by-region basis. Three cumulus schemes, two radiation schemes, two microphysics schemes, and two planetary boundary layer schemes were included in the ensemble. Simulations of total precipitation showed reasonable agreement with observations in regions where the diurnal cycle is directly influenced by solar radiation, (e.g., the U.S. Southeast), but they were less successful in regions where other factors influence the diurnal cycle (e.g., the central United States). The diurnal cycle of precipitation frequency and intensity showed substantial biases in the simulations of all eight regions, namely, overestimation of occurrences and underestimation of intensities. Simulations were sensitive to the cumulus and radiation schemes but were largely insensitive to either microphysics or planetary boundary layer schemes.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0851.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. P. A. Mooney, pmooney@ucar.edu

Abstract

The diurnal cycle of precipitation during the summer season over the contiguous United States is examined in eight distinct regions. These were identified using cluster analysis applied to the diurnal cycle characteristics at 2141 rainfall gauges over the 10-yr period 1991–2000. Application of the clustering technique provides a physically meaningful way of identifying regions for comparison of model results with observations. The diurnal cycle for each region is specified in terms of 1) total precipitation, 2) frequency of precipitation occurrence, and 3) intensity of precipitation per occurrence on an hourly basis averaged over the 10-yr period. The amplitude and phase of each element of the diurnal cycle was obtained from harmonic analysis and has been compared with the results of a 24-member multiphysics ensemble of simulations produced by the Weather Research and Forecast (WRF) Model on a region-by-region basis. Three cumulus schemes, two radiation schemes, two microphysics schemes, and two planetary boundary layer schemes were included in the ensemble. Simulations of total precipitation showed reasonable agreement with observations in regions where the diurnal cycle is directly influenced by solar radiation, (e.g., the U.S. Southeast), but they were less successful in regions where other factors influence the diurnal cycle (e.g., the central United States). The diurnal cycle of precipitation frequency and intensity showed substantial biases in the simulations of all eight regions, namely, overestimation of occurrences and underestimation of intensities. Simulations were sensitive to the cumulus and radiation schemes but were largely insensitive to either microphysics or planetary boundary layer schemes.

Supplemental information related to this paper is available at the Journals Online website: https://dx.doi.org/10.1175/JCLI-D-16-0851.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. P. A. Mooney, pmooney@ucar.edu

Supplementary Materials

    • Supplemental Materials (DOCX 5.56 MB)
Save
  • Argueso, D., A. Di Luca, and J. P. Evans, 2016: Precipitation over urban areas in the western Maritime Continent using a convection-permitting model. Climate Dyn., 47, 11431159, doi:10.1007/s00382-015-2893-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2014: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos., 119, 78897907, doi:10.1002/2014JD021478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., M. J. Roberts, L. Garcia-Carreras, D. Ackerley, M. J. Reeder, A. P. Lock, and R. Schiemann, 2015: Sea-breeze dynamics and convection initiation: The influence of convective parameterization in weather and climate model biases. J. Climate, 28, 80938108, doi:10.1175/JCLI-D-14-00850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833849, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brockhaus, P., D. Lüthi, and C. Schär, 2008: Aspects of the diurnal cycle in a regional climate model. Meteor. Z., 17, 433443, doi:10.1127/0941-2948/2008/0316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., and Coauthors, 2017: Impact of climate change on Gulf of Mexico hurricanes. NCAR Tech. Note NCAR/TN-535+STR, 165 pp., doi:10.5065/D6RN36J3.

    • Crossref
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, doi:10.1175/2008JCLI2275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., T. Zhou, R. Yu, and J. Li, 2009: Summer rain fall duration and its diurnal cycle over the US Great Plains. Int. J. Climatol., 29, 15151519, doi:10.1002/joc.1806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, J. C., and K. P. Bowman, 2004: Diurnal cycle of tropical precipitation in a general circulation model. J. Geophys. Res., 109, D17105, doi:10.1029/2004JD004818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note TN-464+STR, 226 pp.

  • Cornes, R. C., and P. D. Jones, 2013: How well does the ERA-Interim reanalysis replicate trends in extremes of surface temperature across Europe? J. Geophys. Res. Atmos., 118, 10 26210 276, doi:10.1002/jgrd.50799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999a: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, doi:10.1029/98JD02720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999b: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473, doi:10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., X. Lin, and K.-L. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727744, doi:10.1007/s00382-007-0260-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diro, G. T., S. A. Raischer, F. Giorgi, and A. M. Tompkins, 2012: Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Climate Res., 52, 3148, doi:10.3354/cr01049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M., and L. Mahrt, 1991: OSU 1-D PBL model: User’s guide, version 1.04. Oregon State University Department of Atmospheric Sciences Rep., 126 pp.

  • Evans, J., and S. Westra, 2012: Investigating the mechanisms of diurnal rainfall variability using a regional climate model. J. Climate, 25, 72327247, doi:10.1175/JCLI-D-11-00616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., S. P. Charles, B. Timbal, B. Jovanovic, and F. Ouyang, 2015: Comparison of NCEP-NCAR and ERA-Interim over Australia. Int. J. Climatol., 36, 23452367, doi:10.1002/joc.4499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gianotti, R. L., D. Zhang, and E. A. B. Eltahir, 2012: Assessment of the regional climate model version 3 over the Maritime Continent using different cumulus parameterization and land surface schemes. J. Climate, 25, 638656, doi:10.1175/JCLI-D-11-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hammer, G. R., and P. M. Steurer, 1997: Data set documentation for hourly precipitation data. NOAA/NCDC Tech. Doc. TD3240, 18 pp.

  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecasting System. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., P. K. Synder, and S. Leiss, 2013: Use of dynamical downscaling to improve the simulation of central U.S. warm season precipitation in CMIP5 models. J. Geophys. Res. Atmos., 118, 522536, doi:10.1002/2013JD019994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice-microphysical processes for the bulk parameterizations of cloud and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., A. Walther, G. Nikulin, D. Chen, and C. Jones, 2011: Diurnal cycle of precipitation amount and frequency in Sweden: Observation versus model simulation. Tellus, 63A, 664674, doi:10.1111/j.1600-0870.2011.00517.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., I. J. Choi, S.-Y. Kim, and J.-Y. Han, 2016: Impact of model resolution on the simulation of diurnal variations of precipitation over East Asia. J. Geophys. Res. Atmos., 121, 16521670, doi:10.1002/2015JD023948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, J., N. L. Miller, and N. Schlegel, 2010: Sensitivity study of four land surface schemes in the WRF Model. Adv. Meteor., 2010, 167436, doi:10.1155/2010/167436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

  • Klingaman, N. P., and S. J. Woolnough, 2014: The role of air-sea coupling in the simulation of the Madden-Julian oscillation in the Hadley Centre model. Quart. J. Roy. Meteor. Soc., 140, 22722286, doi:10.1002/qj.2295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., S. D. Schubert, M. J. Suarez, J.-K. E. Schemm, H.-L. Pan, J. Han, and S.-H. Yoo, 2008: Role of convection triggers in the simulation of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. J. Geophys. Res., 113, D02111, doi:10.1029/2007JD008984.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., L. Li, A. Dai, and K. E. Kunkel, 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, doi:10.1029/2004GL021054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, S., P. Terray, G. Madec, J. J. Luo, T. Yamagata, and K. Takahashi, 2012: Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Climate Dyn., 39, 681707, doi:10.1007/s00382-011-1247-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., F. J. Mulligan, and R. Fealy, 2011: Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int. J. Climatol., 31, 545557, doi:10.1002/joc.2098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., F. J. Mulligan, and R. Fealy, 2013: Evaluation of the sensitivity of the Weather Research and Forecasting Model to parameterization schemes for regional climates of Europe over the period 1990–1995. J. Climate, 26, 10021017, doi:10.1175/JCLI-D-11-00676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., F. J. Mulligan, and C. Broderick, 2016: Diurnal cycle of precipitation over the British Isles in a 0.44° WRF multiphysics regional climate ensemble over the period 1990–1995. Climate Dyn., 47, 32813300, doi:10.1007/s00382-016-3026-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J. H., B. M. Kim, K. Y. Kim, H. J. Song, and G. H. Lim, 2013: The impact of the diurnal cycle on the MJO over the Maritime Continent: A modeling study assimilating TRMM rain rate into global analysis. Climate Dyn., 40, 893911, doi:10.1007/s00382-012-1419-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., and K. Musiake, 1994: Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J. Appl. Meteor., 33, 18991922, doi:10.1175/1520-0450(1994)033<1445:SCOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PaiMazumder, D., and J. M. Done, 2016: Potential predictability sources of the 2012 US drought in observations and a regional model ensemble. J. Geophys. Res. Atmos., 121, 12 58112 592, doi:10.1002/2016JD025322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pei, L., N. Moore, S. Zhong, L. Luo, D. W. Hyndman, W. E. Heilman, and Z. Gao, 2014: WRF Model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the southern Great Plains of the United States. J. Climate, 27, 77037724, doi:10.1175/JCLI-D-14-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perdinan, and J. A. Winkler, 2015: Selection of climate information for regional climate change assessments using regionalization techniques: An example for the Upper Great Lakes Region, USA. Int. J. Climatol., 35, 10271040, doi:10.1002/joc.4036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2014: Characteristics of annual, seasonal, and diurnal precipitation in the southeastern United States derived from long-term remotely sensed data. Atmos. Res., 144, 420, doi:10.1016/j.atmosres.2013.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, F., and X.-Z. Liang, 2015: Effects of cumulus parameterizations on predictions of summer flood in the central United States. Climate Dyn., 45, 727744, doi:10.1007/s00382-014-2301-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseeuw, P. J., 1987: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 5365, doi:10.1016/0377-0427(87)90125-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., 2016: Diurnal timescale feedbacks in the tropical cumulus regime. J. Adv. Model. Earth Syst., 8, 319344, doi:10.1002/2016MS000713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, doi:10.1175/2008JHM1052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Svensson, C., and D. Jakob, 2002: Diurnal and seasonal characteristics of precipitation at an upland site in Scotland. Int. J. Climatol., 22, 587598, doi:10.1002/joc.674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale model. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twardosz, R., 2007: Seasonal characteristics of diurnal precipitation variation in Kraków (south Poland). Int. J. Climatol., 27, 957968, doi:10.1002/joc.1439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walther, A., J.-H. Jeong, G. Nikulin, C. Jones, and C. Deliang, 2013: Evaluation of the warm season diurnal cycle of precipitation over Sweden simulated by the Rossby Centre regional climate model RCA3. Atmos. Res., 119, 131139, doi:10.1016/j.atmosres.2011.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and V. R. Kotamarthi, 2015: High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America. Earth’s Future, 3, 268288, doi:10.1002/2015EF000304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 704 pp.

  • Winkler, J. A., 1987: Diurnal variations of summertime very heavy precipitation in the eastern and central United States. Phys. Geogr., 8, 210224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaqub, A., P. Seibert, and H. Formayer, 2011: Diurnal precipitation cycle in Austria. Theor. Appl. Climatol., 103, 109118, doi:10.1007/s00704-010-0281-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., K. H. Cook, and E. K. Vizy, 2016: The diurnal cycle of warm season rainfall over West Africa. Part II: Convection-permitting simulations. J. Climate, 29, 84398454, doi:10.1175/JCLI-D-15-0875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1310 576 30
PDF Downloads 784 181 19