Temperature and Precipitation Variance in CMIP5 Simulations and Paleoclimate Records of the Last Millennium

Luke A. Parsons Department of Geosciences, The University of Arizona, Tucson, Arizona

Search for other papers by Luke A. Parsons in
Current site
Google Scholar
PubMed
Close
,
Garrison R. Loope Department of Geosciences, The University of Arizona, Tucson, Arizona

Search for other papers by Garrison R. Loope in
Current site
Google Scholar
PubMed
Close
,
Jonathan T. Overpeck Department of Geosciences, and Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Jonathan T. Overpeck in
Current site
Google Scholar
PubMed
Close
,
Toby R. Ault Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Toby R. Ault in
Current site
Google Scholar
PubMed
Close
,
Ronald Stouffer Department of Geosciences, The University of Arizona, Tucson, Arizona

Search for other papers by Ronald Stouffer in
Current site
Google Scholar
PubMed
Close
, and
Julia E. Cole Department of Geosciences, and Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Julia E. Cole in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate assessments of future climate impacts require realistic simulation of interannual–century-scale temperature and precipitation variability. Here, well-constrained paleoclimate data and the latest generation of Earth system model data are used to evaluate the magnitude and spatial consistency of climate variance distributions across interannual to centennial frequencies. It is found that temperature variance generally increases with time scale in patterns that are spatially consistent among models, especially over the mid- and high-latitude oceans. However, precipitation is similar to white noise across much of the globe. When Earth system model variance is compared to variance generated by simple autocorrelation, it is found that tropical temperature variability in Earth system models is difficult to distinguish from variability generated by simple autocorrelation. By contrast, both forced and unforced Earth system models produce variability distinct from a simple autoregressive process over most high-latitude oceans. This new analysis of tropical paleoclimate records suggests that low-frequency variance dominates the temperature spectrum across the tropical Pacific and Indian Oceans, but in many Earth system models, interannual variance dominates the simulated central and eastern tropical Pacific temperature spectrum, regardless of forcing. Tropical Pacific model spectra are compared to spectra from the instrumental record, but the short instrumental record likely cannot provide accurate multidecadal–centennial-scale variance estimates. In the coming decades, both forced and natural patterns of decade–century-scale variability will determine climate-related risks. Underestimating low-frequency temperature and precipitation variability may significantly alter our understanding of the projections of these climate impacts.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-16-0863.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luke A. Parsons, lukeaparsons@email.arizona.edu

Abstract

Accurate assessments of future climate impacts require realistic simulation of interannual–century-scale temperature and precipitation variability. Here, well-constrained paleoclimate data and the latest generation of Earth system model data are used to evaluate the magnitude and spatial consistency of climate variance distributions across interannual to centennial frequencies. It is found that temperature variance generally increases with time scale in patterns that are spatially consistent among models, especially over the mid- and high-latitude oceans. However, precipitation is similar to white noise across much of the globe. When Earth system model variance is compared to variance generated by simple autocorrelation, it is found that tropical temperature variability in Earth system models is difficult to distinguish from variability generated by simple autocorrelation. By contrast, both forced and unforced Earth system models produce variability distinct from a simple autoregressive process over most high-latitude oceans. This new analysis of tropical paleoclimate records suggests that low-frequency variance dominates the temperature spectrum across the tropical Pacific and Indian Oceans, but in many Earth system models, interannual variance dominates the simulated central and eastern tropical Pacific temperature spectrum, regardless of forcing. Tropical Pacific model spectra are compared to spectra from the instrumental record, but the short instrumental record likely cannot provide accurate multidecadal–centennial-scale variance estimates. In the coming decades, both forced and natural patterns of decade–century-scale variability will determine climate-related risks. Underestimating low-frequency temperature and precipitation variability may significantly alter our understanding of the projections of these climate impacts.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-16-0863.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luke A. Parsons, lukeaparsons@email.arizona.edu

Supplementary Materials

    • Supplemental Materials (DOCX 17.32 MB)
Save
  • Abram, N. J., M. K. Gagan, J. E. Cole, W. S. Hantoro, and M. Mudelsee, 2008: Recent intensification of tropical climate variability in the Indian Ocean. Nat. Geosci., 1, 849853, doi:10.1038/ngeo357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, M., and Coauthors, 2013: Continental-scale temperature variability during the past two millennia. Nat. Geosci., 6, 339346, doi:10.1038/ngeo1797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alibert, C., and L. Kinsley, 2008: A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 1. What can we learn from an unusual coral record? J. Geophys. Res., 113, C04008, doi:10.1029/2006JC003979.

    • Search Google Scholar
    • Export Citation
  • Anchukaitis, K. J., B. M. Buckley, E. R. Cook, B. I. Cook, R. D. D’Arrigo, and C. M. Ammann, 2010: Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys. Res. Lett., 37, L22703, doi:10.1029/2010GL044843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asami, R., T. Yamada, Y. Iryu, T. Quinn, C. Meyer, and G. Paulay, 2005: Interannual and decadal variability of the western Pacific sea surface condition for the years 1787–2000: Reconstruction based on stable isotope record from a Guam coral. J. Geophys. Res., 110, C05018, doi:10.1029/2004JC002555.

    • Search Google Scholar
    • Export Citation
  • Ault, T. R., J. E. Cole, M. N. Evans, H. Barnett, N. J. Abram, A. W. Tudhope, and B. K. Linsley, 2009: Intensified decadal variability in tropical climate during the late 19th century. Geophys. Res. Lett., 36, L08602, doi:10.1029/2008GL036924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ault, T. R., C. Deser, M. Newman, and J. Emile-Geay, 2013a: Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophys. Res. Lett., 40, 34503456, doi:10.1002/grl.50647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ault, T. R., J. E. Cole, J. T. Overpeck, G. T. Pederson, S. St. George, B. Otto-Bliesner, C. A. Woodhouse, and C. Deser, 2013b: The continuum of hydroclimate variability in western North America during the last millennium. J. Climate, 26, 58635878, doi:10.1175/JCLI-D-11-00732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ault, T. R., J. E. Cole, J. T. Overpeck, G. T. Pederson, and D. M. Meko, 2014: Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J. Climate, 27, 75297549, doi:10.1175/JCLI-D-12-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagnato, S., B. K. Linsley, S. S. Howe, G. M. Wellington, and J. Salinger, 2005: Coral oxygen isotope records of interdecadal climate variations in the South Pacific convergence zone region. Geochem. Geophys. Geosyst., 6, Q06001, doi:10.1029/2004GC000879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakker, P., P. U. Clark, N. R. Golledge, A. Schmittner, and M. E. Weber, 2017: Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge. Nature, 541, 7276, doi:10.1038/nature20582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, doi:10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air-sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82, doi:10.1016/S0065-2687(08)60005-9.

    • Crossref
    • Export Citation
  • Blender, R., and K. Fraedrich, 2003: Long time memory in global warming simulations. Geophys. Res. Lett., 30, 1769, doi:10.1029/2003GL017666.

  • Boiseau, M., A. Juillet-Leclerc, P. Yiou, B. Salvat, P. Isdale, and M. Guillaume, 1998: Atmospheric and oceanic evidences of El Nino Southern Oscillation events in the south central Pacific Ocean from coral stable isotopic records over the last 137 years. Paleoceanography, 13, 671685, doi:10.1029/98PA02502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 1998: A role for the tropical Pacific. Science, 282, 5961, doi:10.1126/science.282.5386.59.

  • Charles, C., D. Hunter, and R. Fairbanks, 1997: Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science, 277, 925928, doi:10.1126/science.277.5328.925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charles, C., K. Cobb, M. Moore, and R. Fairbanks, 2003: Monsoon–tropical ocean interaction in a network of coral records spanning the 20th century. Mar. Geol., 201, 207222, doi:10.1016/S0025-3227(03)00217-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cobb, K., C. Charles, and D. Hunter, 2001: A central tropical Pacific coral demonstrates Pacific, Indian, and Atlantic decadal climate connections. Geophys. Res. Lett., 28, 22092212, doi:10.1029/2001GL012919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cobb, K., C. Charles, H. Cheng, and R. Edwards, 2003: El Nino/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424, 271276, doi:10.1038/nature01779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cobb, K., N. Westphal, H. R. Sayani, J. T. Watson, E. Di Lorenzo, H. Cheng, R. L. Edwards, and C. D. Charles, 2013: Highly variable El Nino Southern Oscillation throughout the Holocene. Science, 339, 6770, doi:10.1126/science.1228246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J., R. Dunbar, T. McClanahan, and N. Muthiga, 2000: Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries. Science, 287, 617619, doi:10.1126/science.287.5453.617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., G. Zielinski, B. Vinther, R. Udisti, K. Kreutzs, J. Cole-Dai, and E. Castellano, 2008: Volcanism and the Little Ice Age. PAGES Newsletter, Vol. 16 (3), PAGES International Project Office, Bern, Switzerland, 22–23, doi:10.22498/pages.16.3.

    • Crossref
    • Export Citation
  • Dai, A., J. C. Fyfe, S. Xie, and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555559, doi:10.1038/nclimate2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damassa, T., J. Cole, H. Barnett, T. Ault, and T. McClanahan, 2006: Enhanced multidecadal climate variability in the seventeenth century from coral isotope records in the western Indian Ocean. Paleoceanography, 21, PA2016, doi:10.1029/2005PA001217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, S. G., L. A. Parsons, G. R. Loope, J. T. Overpeck, T. R. Ault, and J. Emile-Geay, 2017: Improved spectral comparisons of paleoclimate models and observations via proxy system modeling: Implications for multi-decadal variability. Earth Planet. Sci. Lett., 476, 3446, doi:10.1016/j.epsl.2017.07.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLong, K. L., T. M. Quinn, F. W. Taylor, K. Lin, and C. Shen, 2012: Sea surface temperature variability in the southwest tropical Pacific since AD 1649. Nat. Climate Change, 2, 799804, doi:10.1038/nclimate1583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2012: Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model. Geophys. Res. Lett., 39, L13702, doi:10.1029/2012GL052107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditlevsen, P., H. Svensmark, and S. Johnsen, 1996: Contrasting atmospheric and climate dynamics of the last-glacial and Holocene periods. Nature, 379, 810812, doi:10.1038/379810a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Druffel, E., and S. Griffin, 1999: Variability of surface ocean radiocarbon and stable isotopes in the southwestern Pacific. J. Geophys. Res., 104, 23 60723 613, doi:10.1029/1999JC900212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunbar, R., G. Wellington, M. Colgan, and P. Glynn, 1994: Eastern Pacific sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galápagos corals. Paleoceanography, 9, 291315, doi:10.1029/93PA03501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairbanks, R., M. Evans, J. Rubenstone, R. Mortlock, K. Broad, M. Moore, and C. Charles, 1997: Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs, 16 (Suppl.), S93S100, doi:10.1007/s003380050245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and R. Blender, 2003: Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys. Rev. Lett., 90, 108501, doi:10.1103/PhysRevLett.90.108501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., U. Luksch, and R. Blender, 2004: 1/f model for long-time memory of the ocean surface temperature. Phys. Rev., 70E, 037301, doi:10.1103/PhysRevE.70.037301.

    • Search Google Scholar
    • Export Citation
  • Franke, J., D. Frank, C. C. Raible, J. Esper, and S. Broennimann, 2013: Spectral biases in tree-ring climate proxies. Nat. Climate Change, 3, 360364, doi:10.1038/nclimate1816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, part II: Application to sea‐surface temperature anomalies and thermocline variability. Tellus, 29A, 289305, doi:10.3402/tellusa.v29i4.11362.

    • Search Google Scholar
    • Export Citation
  • Fredriksen, H., and K. Rypdal, 2016: Spectral characteristics of instrumental and climate model surface temperatures. J. Climate, 29, 12531268, doi:10.1175/JCLI-D-15-0457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, doi:10.1029/2008JD010239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorman, M. K., and Coauthors, 2012: A coral-based reconstruction of sea surface salinity at Sabine Bank, Vanuatu from 1842 to 2007 CE. Paleoceanography, 27, PA3226, doi:10.1029/2012PA002302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grove, C. A., and Coauthors, 2013: Madagascar corals reveal a multidecadal signature of rainfall and river runoff since 1708. Climate Past, 9, 641656, doi:10.5194/cp-9-641-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilderson, T., and D. Schrag, 1999: Reliability of coral isotope records from the western Pacific warm pool: A comparison using age-optimized records. Paleoceanography, 14, 457464, doi:10.1029/1999PA900024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, doi:10.1175/2008BAMS2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models: Part I. Theory. Tellus, 28A, 473485, doi:10.3402/tellusa.v28i6.11316.

  • Henriksson, S. V., P. Raisanen, J. Silen, H. Jarvinen, and A. Laaksonen, 2015: Improved power-law estimates from multiple samples provided by millennium climate simulations. Theor. Appl. Climatol., 119, 667677, doi:10.1007/s00704-014-1132-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huybers, P., and W. Curry, 2006: Links between annual, Milankovitch and continuum temperature variability. Nature, 441, 329332, doi:10.1038/nature04745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., J. E. Smerdon, R. Seager, and J. F. González-Rouco, 2012: A Pacific centennial oscillation predicted by coupled GCMs. J. Climate, 25, 59435961, doi:10.1175/JCLI-D-11-00421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhnert, H., J. Patzold, B. Hatcher, K. Wyrwoll, A. Eisenhauer, L. Collins, Z. Zhu, and G. Wefer, 1999: A 200-year coral stable oxygen isotope record from a high-latitude reef off western Australia. Coral Reefs, 18, 112, doi:10.1007/s003380050147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhnert, H., J. Patzold, K. Wyrwoll, and G. Wefer, 2000: Monitoring climate variability over the past 116 years in coral oxygen isotopes from Ningaloo Reef, Western Australia. Int. J. Earth Sci., 88, 725732, doi:10.1007/s005310050300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J., and R. Bryson, 1974: Variance spectrum of Holocene climatic fluctuations in North Atlantic sector. J. Atmos. Sci., 31, 19581963, doi:10.1175/1520-0469(1974)031<1958:VSOHCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laepple, T., and P. Huybers, 2013: Reconciling discrepancies between Uk37 and Mg/Ca reconstructions of Holocene marine temperature variability. Earth Planet. Sci. Lett., 375, 418429, doi:10.1016/j.epsl.2013.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laepple, T., and P. Huybers, 2014a: Global and regional variability in marine surface temperatures. Geophys. Res. Lett., 41, 25282534, doi:10.1002/2014GL059345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laepple, T., and P. Huybers, 2014b: Ocean surface temperature variability: Large model-data differences at decadal and longer periods. Proc. Natl. Acad. Sci. USA, 111, 16 68216 687, doi:10.1073/pnas.1412077111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemke, P., 1977: Stochastic climate models, part 3. Application to zonally averaged energy models. Tellus, 29, 385392, doi:10.3402/tellusa.v29i5.11371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsley, B., R. Dunbar, G. Wellington, and D. Mucciarone, 1994: A coral-based reconstruction of intertropical convergence zone variability over Central America since 1707. J. Geophys. Res., 99, 99779994, doi:10.1029/94JC00360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsley, B., G. Wellington, and D. Schrag, 2000a: Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 AD. Science, 290, 11451148, doi:10.1126/science.290.5494.1145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsley, B., L. Ren, R. Dunbar, and S. Howe, 2000b: El Niño Southern Oscillation (ENSO) and decadal-scale climate variability at 10°N in the eastern Pacific from 1893 to 1994: A coral-based reconstruction from Clipperton Atoll. Paleoceanography, 15, 322335, doi:10.1029/1999PA000428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsley, B., G. Wellington, D. Schrag, L. Ren, M. Salinger, and A. Tudhope, 2004: Geochemical evidence from corals for changes in the amplitude and spatial pattern of South Pacific interdecadal climate variability over the last 300 years. Climate Dyn., 22, 111, doi:10.1007/s00382-003-0364-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsley, B., A. Kaplan, Y. Gouriou, J. Salinger, P. deMenocal, G. Wellington, and S. Howe, 2006: Tracking the extent of the South Pacific convergence zone since the early 1600s. Geochem. Geophys. Geosyst., 7, Q05003, doi:10.1029/2005GC001115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lough, J. M., 2011: Great Barrier Reef coral luminescence reveals rainfall variability over northeastern Australia since the 17th century. Paleoceanography, 26, PA2201, doi:10.1029/2010PA002050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., D. Schertzer, and D. Varon, 2013: Do GCMs predict the climate … or macroweather? Earth Syst. Dyn., 4, 439454, doi:10.5194/esd-4-439-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacMartin, D. G., E. Tziperman, and L. Zanna, 2013: Frequency domain multimodel analysis of the response of Atlantic meridional overturning circulation to surface forcing. J. Climate, 26, 83238340, doi:10.1175/JCLI-D-12-00717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. Stouffer, 1996: Low-frequency variability of surface air temperature in a 1000-year integration of a coupled atmosphere–ocean–land surface model. J. Climate, 9, 376393, doi:10.1175/1520-0442(1996)009<0376:LFVOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2013: Information from paleoclimate archives. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 383–464.

  • McGregor, H. V., M. J. Fischer, M. K. Gagan, D. Fink, S. J. Phipps, H. Wong, and C. D. Woodroffe, 2013: A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago. Nat. Geosci., 6, 949953, doi:10.1038/ngeo1936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., H. Kayanne, H. Iijima, T. R. McClanahan, S. K. Behera, and T. Yamagata, 2009: Mode shift in the Indian Ocean climate under global warming stress. Geophys. Res. Lett., 36, L23708, doi:10.1029/2009GL040590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumaier, A., and T. Schneider, 2001: Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Software, 27, 2757, doi:10.1145/382043.382304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., G. Compo, and M. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, doi:10.1175/JCLI-D-15-0508.1.

  • Nurhati, I. S., K. M. Cobb, and E. Di Lorenzo, 2011: Decadal-scale SST and salinity variations in the central tropical Pacific: Signatures of natural and anthropogenic climate change. J. Climate, 24, 32943308, doi:10.1175/2011JCLI3852.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, M. C., R. B. Dunbar, D. A. Mucciarone, E. Druffel, and J. Sanchez-Cabeza, 2014: A 215-yr coral δ18O time series from Palau records dynamics of the west Pacific warm pool following the end of the Little Ice Age. Coral Reefs, 33, 719731, doi:10.1007/s00338-014-1146-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B., and Coauthors, 2015: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Amer. Meteor. Soc., 97, 735754, doi:10.1175/BAMS-D-14-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelletier, J., 1998: The power spectral density of atmospheric temperature from time scales of 10−2 to 106 yr. Earth Planet. Sci. Lett., 158, 157164, doi:10.1016/S0012-821X(98)00051-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelletier, J., and D. Turcotte, 1997: Long-range persistence in climatological and hydrological time series: Analysis, modeling and application to drought hazard assessment. J. Hydrol., 203, 198208, doi:10.1016/S0022-1694(97)00102-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeiffer, M., O. Timm, W. Dullo, and S. Podlech, 2004: Oceanic forcing of interannual and multidecadal climate variability in the southwestern Indian Ocean: Evidence from a 160 year coral isotopic record (La Réunion, 55°E, 21°S). Paleoceanography, 19, PA4006, doi:10.1029/2003PA000964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, T., T. Crowley, and F. Taylor, 1996: New stable isotope results from a 173‐year coral from Espiritu Santo, Vanuatu. Geophys. Res. Lett., 23, 34133416, doi:10.1029/96GL03169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, T., T. Crowley, F. Taylor, C. Henin, P. Joannot, and Y. Join, 1998: A multicentury stable isotope record from a New Caledonia coral: Interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 AD. Paleoceanography, 13, 412426, doi:10.1029/98PA00401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, T., F. Taylor, and T. Crowley, 2006: Coral-based climate variability in the western Pacific warm pool since 1867. J. Geophys. Res., 111, C11006, doi:10.1029/2005JC003243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., and M. B. Baker, 2016: The response of glaciers to climatic persistence. J. Glaciol., 62, 440450, doi:10.1017/jog.2016.4.

  • Russell, J. L., R. J. Stouffer, and K. W. Dixon, 2006: Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J. Climate, 19, 45604575, doi:10.1175/JCLI3869.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2012: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.1). Geosci. Model Dev., 5, 185191, doi:10.5194/gmd-5-185-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., N. C. Jourdain, J. N. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26, 85978615, doi:10.1175/JCLI-D-12-00521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuman, B., 2012: Patterns, processes, and impacts of abrupt climate change in a warm world: The past 11,700 years. Wiley Interdiscip. Rev.: Climate Change, 3, 1943, doi:10.1002/wcc.152.

    • Search Google Scholar
    • Export Citation
  • Sigl, M., and Coauthors, 2015: Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523, 543, doi:10.1038/nature14565.

  • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9, 14031420, doi:10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1982: Spectrum estimation and harmonic-analysis. Proc. IEEE, 70, 10551096, doi:10.1109/PROC.1982.12433.

  • Thompson, D. M., T. R. Ault, M. N. Evans, J. E. Cole, and J. Emile-Geay, 2011: Comparison of observed and simulated tropical climate trends using a forward model of coral δ18O. Geophys. Res. Lett., 38, L14706, doi:10.1029/2011GL048224.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. M., J. E. Cole, G. T. Shen, A. W. Tudhope, and G. A. Meehl, 2015: Early twentieth-century warming linked to tropical Pacific wind strength. Nat. Geosci., 8, 117121, doi:10.1038/ngeo2321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornalley, D. J. R., H. Elderfield, and I. N. McCave, 2009: Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic. Nature, 457, 711714, doi:10.1038/nature07717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudhope, A., and Coauthors, 2001: Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science, 291, 15111517, doi:10.1126/science.1057969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urban, F. E., J. E. Cole, and J. T. Overpeck, 2000: Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature, 407, 989993, doi:10.1038/35039597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdes, P., 2011: Built for stability. Nat. Geosci., 4, 414416, doi:10.1038/ngeo1200.

  • Van Albada, S., and P. Robinson, 2007: Transformation of arbitrary distributions to the normal distribution with application to EEG test–retest reliability. J. Neurosci. Methods, 161, 205211, doi:10.1016/j.jneumeth.2006.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vyushin, D. I., and P. J. Kushner, 2009: Power-law and long-memory characteristics of the atmospheric general circulation. J. Climate, 22, 28902904, doi:10.1175/2008JCLI2528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vyushin, D. I., I. Zhidkov, S. Havlin, A. Bunde, and S. Brenner, 2004: Volcanic forcing improves atmosphere-ocean coupled general circulation model scaling performance. Geophys. Res. Lett., 31, L10206, doi:10.1029/2004GL019499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y., G. H. Miller, B. L. Otto-Bliesner, M. M. Holland, D. A. Bailey, D. P. Schneider, and A. Geirsdottir, 2011: Centennial-scale climate change from decadally-paced explosive volcanism: A coupled sea ice-ocean mechanism. Climate Dyn., 37, 23732387, doi:10.1007/s00382-010-0967-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zinke, J., W. Dullo, G. Heiss, and A. Eisenhauer, 2004: ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995. Earth Planet. Sci. Lett., 228, 177194, doi:10.1016/j.epsl.2004.09.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zinke, J., M. Pfeiffer, O. Timm, W.-C. Dullo, D. Kroon, and B. A. Thomassin, 2008: Mayotte coral reveals hydrological changes in the western Indian Ocean between 1881 and 1994. Geophys. Res. Lett., 35, L23707, doi:10.1029/2008GL035634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zinke, J., M. Pfeiffer, O. Timm, W.-C. Dullo, and G. J. A. Brummer, 2009: Western Indian Ocean marine and terrestrial records of climate variability: A review and new concepts on land–ocean interactions since AD 1660. Int. J. Earth Sci., 98, 115133, doi:10.1007/s00531-008-0365-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2405 1279 58
PDF Downloads 904 130 13