Improved ENSO Forecasting Using Bayesian Updating and the North American Multimodel Ensemble (NMME)

Wei Zhang IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Wei Zhang in
Current site
Google Scholar
PubMed
Close
,
Gabriele Villarini IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Gabriele Villarini in
Current site
Google Scholar
PubMed
Close
,
Louise Slater IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, and Department of Geography, Loughborough University, Loughborough, United Kingdom

Search for other papers by Louise Slater in
Current site
Google Scholar
PubMed
Close
,
Gabriel A. Vecchi Department of Geosciences, Princeton University, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
, and
A. Allen Bradley IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by A. Allen Bradley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study assesses the forecast skill of eight North American Multimodel Ensemble (NMME) models in predicting Niño-3/-3.4 indices and improves their skill using Bayesian updating (BU). The forecast skill that is obtained using the ensemble mean of NMME (NMME-EM) shows a strong dependence on lead (initial) month and target month and is quite promising in terms of correlation, root-mean-square error (RMSE), standard deviation ratio (SDRatio), and probabilistic Brier skill score, especially at short lead months. However, the skill decreases in target months from late spring to summer owing to the spring predictability barrier. When BU is applied to eight NMME models (BU-Model), the forecasts tend to outperform NMME-EM in predicting Niño-3/-3.4 in terms of correlation, RMSE, and SDRatio. For Niño-3.4, the BU-Model outperforms NMME-EM forecasts for almost all leads (1–12; particularly for short leads) and target months (from January to December). However, for Niño-3, the BU-Model does not outperform NMME-EM forecasts for leads 7–11 and target months from June to October in terms of correlation and RMSE. Last, the authors test further potential improvements by preselecting “good” models (BU-Model-0.3) and by using principal component analysis to remove the multicollinearity among models, but these additional methodologies do not outperform the BU-Model, which produces the best forecasts of Niño-3/-3.4 for the 2015/16 El Niño event.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0073.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei Zhang, wei-zhang-3@uiowa.edu

Abstract

This study assesses the forecast skill of eight North American Multimodel Ensemble (NMME) models in predicting Niño-3/-3.4 indices and improves their skill using Bayesian updating (BU). The forecast skill that is obtained using the ensemble mean of NMME (NMME-EM) shows a strong dependence on lead (initial) month and target month and is quite promising in terms of correlation, root-mean-square error (RMSE), standard deviation ratio (SDRatio), and probabilistic Brier skill score, especially at short lead months. However, the skill decreases in target months from late spring to summer owing to the spring predictability barrier. When BU is applied to eight NMME models (BU-Model), the forecasts tend to outperform NMME-EM in predicting Niño-3/-3.4 in terms of correlation, RMSE, and SDRatio. For Niño-3.4, the BU-Model outperforms NMME-EM forecasts for almost all leads (1–12; particularly for short leads) and target months (from January to December). However, for Niño-3, the BU-Model does not outperform NMME-EM forecasts for leads 7–11 and target months from June to October in terms of correlation and RMSE. Last, the authors test further potential improvements by preselecting “good” models (BU-Model-0.3) and by using principal component analysis to remove the multicollinearity among models, but these additional methodologies do not outperform the BU-Model, which produces the best forecasts of Niño-3/-3.4 for the 2015/16 El Niño event.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0073.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei Zhang, wei-zhang-3@uiowa.edu

Supplementary Materials

    • Supplemental Materials (DOCX 16.48 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and M. K. Tippett, 2013: Predictions of Niño3.4 SST in CFSv1 and CFSv2: A diagnostic comparison. Climate Dyn., 41, 16151633, doi:10.1007/s00382-013-1845-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, doi:10.1175/BAMS-D-11-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, H. M. van den Dool, and D. A. Unger, 2015: Toward an improved multimodel ENSO prediction. J. Appl. Meteor. Climatol., 54, 15791595, doi:10.1175/JAMC-D-14-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D., and E. Sarachik, 1995: Understanding and predicting ENSO. Rev. Geophys., 33, 13671376, doi:10.1029/95RG00933.

  • Becker, E., H. van den Dool, and Q. Zhang, 2014: Predictability and forecast skill in NMME. J. Climate, 27, 58915906, doi:10.1175/JCLI-D-13-00597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021, doi:10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., É. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blunden, J., and D. S. Arndt, Eds., 2016: State of the Climate in 2015. Bull. Amer. Meteor. Soc., 97 (8), S1S275, doi:10.1175/2016BAMSStateoftheClimate.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, A. A., M. Habib, and S. S. Schwartz, 2015: Climate index weighting of ensemble streamflow forecasts using a simple Bayesian approach. Water Resour. Res., 51, 73827400, doi:10.1002/2014WR016811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827832, doi:10.1038/321827a0.

  • Capotondi, A., 2013: ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118, 47554770, doi:10.1002/jgrc.20335.

  • Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 16991702, doi:10.1126/science.269.5231.1699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L.-C., H. van den Dool, E. Becker, and Q. Zhang, 2017: ENSO precipitation and temperature forecasts in the North American Multimodel Ensemble: Composite analysis and validation. J. Climate, 30, 11031125, doi:10.1175/JCLI-D-15-0903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Niño and the Southern Oscillation. Academic Press, 324 pp.

  • Coelho, C. A. S., S. Pezzulli, M. Balmaseda, F. J. Doblas-Reyes, and D. B. Stephenson, 2004: Forecast calibration and combination: A simple Bayesian approach for ENSO. J. Climate, 17, 15041516, doi:10.1175/1520-0442(2004)017<1504:FCACAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., 2000: The El Niño–Southern Oscillation in the second Hadley Centre coupled model and its response to greenhouse warming. J. Climate, 13, 12991312, doi:10.1175/1520-0442(2000)013<1299:TENOSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2014: Comparing forecast skill. Mon. Wea. Rev., 142, 46584678, doi:10.1175/MWR-D-14-00045.1.

  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian, 2007: Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour., 30, 13711386, doi:10.1016/j.advwatres.2006.11.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky, 1999: Bayesian model averaging: A tutorial. Stat. Sci., 14, 382401.

  • Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA, 113, 20052010, doi:10.1073/pnas.1514182113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imada, Y., H. Tatebe, M. Watanabe, M. Ishii, and M. Kimoto, 2016: South Pacific influence on the termination of El Niño in 2014. Sci. Rep., 6, 30341, doi:10.1038/srep30341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, doi:10.1175/JCLI-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, doi:10.1007/s00382-008-0397-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., Z.-Z. Hu, B. Jha, and P. Peng, 2017: Estimating ENSO predictability based on multi-model hindcasts. Climate Dyn., 48, 3951, doi:10.1007/s00382-016-3060-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14 37514 393, doi:10.1029/97JC03413.

  • L’Heureux, M. L., and D. W. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludescher, J., A. Gozolchiani, M. I. Bogachev, A. Bunde, S. Havlin, and H. J. Schellnhuber, 2014: Very early warning of next El Niño. Proc. Natl. Acad. Sci. USA, 111, 20642066, doi:10.1073/pnas.1323058111.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and E. F. Wood, 2008: Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States. J. Hydrometeor., 9, 866884, doi:10.1175/2008JHM980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, L., E. F. Wood, and M. Pan, 2007: Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions. J. Geophys. Res., 112, D10102, doi:10.1029/2006JD007655.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, doi:10.1029/2003GL016872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, doi:10.1029/97JC02906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., J. Su, R. Zhang, and X. Rong, 2015: What hindered the El Niño pattern in 2014? Geophys. Res. Lett., 42, 67626770, doi:10.1002/2015GL064899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., D. Simonis, and A. Hense, 2007: Probabilistic climate change predictions applying Bayesian model averaging. Philos. Trans. Roy. Soc. London, 365A, 21032116, doi:10.1098/rsta.2007.2070.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1983: El Niño Southern Oscillation phenomena. Nature, 302, 295301, doi:10.1038/302295a0.

  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222, 11951202, doi:10.1126/science.222.4629.1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Sarachik, E. S., and M. A. Cane, 2010: The El Niño-Southern Oscillation Phenomenon. Cambridge University Press, 384 pp.

    • Crossref
    • Export Citation
  • Slater, L. J., G. Villarini, and A. A. Bradley, 2017: Weighting of NMME temperature and precipitation forecasts across Europe. J. Hydrol., 552, 646659, doi:10.1016/j.jhydrol.2017.07.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, and A. Timmermann, 2015: El Niño–Southern Oscillation frequency cascade. Proc. Natl. Acad. Sci. USA, 112, 13 49013 495, doi:10.1073/pnas.1508622112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. G. Barnston, and S. Li, 2012: Performance of recent multimodel ENSO forecasts. J. Appl. Meteor. Climatol., 51, 637654, doi:10.1175/JAMC-D-11-093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tollefson, J., 2014: El Niño tests forecasters. Nature, 508, 2021, doi:10.1038/508020a.

  • Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño/Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 19852004, doi:10.1002/qj.49712455010.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and A. T. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270, doi:10.1002/wcc.33.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., B. Reich, and Y. H. Lim, 2013: A Bayesian approach to probabilistic streamflow forecasts. J. Hydroinform., 15, 381391, doi:10.2166/hydro.2012.080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, W. B., 1995: Design of a global observing system for gyre-scale upper ocean temperature variability. Prog. Oceanogr., 36, 169217, doi:10.1016/0079-6611(95)00017-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wittenberg, A. T., A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zeng, 2014: ENSO modulation: Is it decadally predictable? J. Climate, 27, 26672681, doi:10.1175/JCLI-D-13-00577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: Teleconnections in the equatorial Pacific Ocean. Science, 180, 6668, doi:10.1126/science.180.4081.66.

  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, doi:10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, doi:10.1175/BAMS-85-2-195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. Chen, A. Kumar, Z.-Z. Hu, and W. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J. Climate, 26, 53585378, doi:10.1175/JCLI-D-12-00600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, doi:10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Leung, F.-H. Graf, and M. Herzog, 2012: Different El Niño types and tropical cyclone landfall in East Asia. J. Climate, 25, 65106523, doi:10.1175/JCLI-D-11-00488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, J.-X. Zhao, L. Qi, and H.-L. Ren, 2013: The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in southwest China. J. Climate, 26, 83928405, doi:10.1175/JCLI-D-12-00851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Leung, and K. Fraedrich, 2015: Different El Niño types and intense typhoons in the western North Pacific. Climate Dyn., 44, 29652977, doi:10.1007/s00382-014-2446-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2016a: Improved simulation of tropical cyclone responses to ENSO in the western North Pacific in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 29, 13911415, doi:10.1175/JCLI-D-15-0475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2016b: Simulated connections between ENSO and tropical cyclones near Guam in a high-resolution GFDL coupled climate model: Implications for seasonal forecasting. J. Climate, 29, 82318248, doi:10.1175/JCLI-D-16-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., H. H. Hendon, O. Alves, G. Liu, and G. Wang, 2016: Weakened eastern Pacific El Niño predictability in the early twenty-first century. J. Climate, 29, 68056822, doi:10.1175/JCLI-D-15-0876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., and J. Zhu, 2016: Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Climate Dyn., 47, 39013915, doi:10.1007/s00382-016-3048-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, Z.-Z. Hu, J. L. Kinter III, and L. Marx, 2013: Predicting US summer precipitation using NCEP Climate Forecast System version 2 initialized by multiple ocean analyses. Climate Dyn., 41, 19411954, doi:10.1007/s00382-013-1785-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., A. Kumar, B. Huang, M. A. Balmaseda, Z.-Z. Hu, L. Marx, and J. L. Kinter III, 2016: The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci. Rep., 6, 19677, doi:10.1038/srep19677.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1748 1026 27
PDF Downloads 445 59 9