Linking the Tropical Northern Hemisphere Pattern to the Pacific Warm Blob and Atlantic Cold Blob

Yu-Chiao Liang Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Yu-Chiao Liang in
Current site
Google Scholar
PubMed
Close
,
Jin-Yi Yu Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Jin-Yi Yu in
Current site
Google Scholar
PubMed
Close
,
Eric S. Saltzman Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Eric S. Saltzman in
Current site
Google Scholar
PubMed
Close
, and
Fan Wang Institute of Oceanography, Chinese Academy of Science, Qingdao, China

Search for other papers by Fan Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During 2013–15, prolonged near-surface warming in the northeastern Pacific was observed and has been referred to as the Pacific warm blob. Here, statistical analyses are conducted to show that the generation of the Pacific blob is closely related to the tropical Northern Hemisphere (TNH) pattern in the atmosphere. When the TNH pattern stays in its positive phase for extended periods of time, it generates prolonged blob events primarily through anomalies in surface heat fluxes and secondarily through anomalies in wind-induced ocean advection. Five prolonged (≥24 months) blob events are identified during the past six decades (1948–2015), and the TNH–blob relationship can be recognized in all of them. Although the Pacific decadal oscillation and El Niño can also induce an arc-shaped warming pattern near the Pacific blob region, they are not responsible for the generation of Pacific blob events. The essential feature of Pacific blob generation is the TNH-forced Gulf of Alaska warming pattern. This study also finds that the atmospheric circulation anomalies associated with the TNH pattern in the North Atlantic can induce SST variability akin to the so-called Atlantic cold blob, also through anomalies in surface heat fluxes and wind-induced ocean advection. As a result, the TNH pattern serves as an atmospheric conducting pattern that connects some of the Pacific warm blob and Atlantic cold blob events. This conducting mechanism has not previously been explored.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jin-Yi Yu, jyyu@uci.edu

Abstract

During 2013–15, prolonged near-surface warming in the northeastern Pacific was observed and has been referred to as the Pacific warm blob. Here, statistical analyses are conducted to show that the generation of the Pacific blob is closely related to the tropical Northern Hemisphere (TNH) pattern in the atmosphere. When the TNH pattern stays in its positive phase for extended periods of time, it generates prolonged blob events primarily through anomalies in surface heat fluxes and secondarily through anomalies in wind-induced ocean advection. Five prolonged (≥24 months) blob events are identified during the past six decades (1948–2015), and the TNH–blob relationship can be recognized in all of them. Although the Pacific decadal oscillation and El Niño can also induce an arc-shaped warming pattern near the Pacific blob region, they are not responsible for the generation of Pacific blob events. The essential feature of Pacific blob generation is the TNH-forced Gulf of Alaska warming pattern. This study also finds that the atmospheric circulation anomalies associated with the TNH pattern in the North Atlantic can induce SST variability akin to the so-called Atlantic cold blob, also through anomalies in surface heat fluxes and wind-induced ocean advection. As a result, the TNH pattern serves as an atmospheric conducting pattern that connects some of the Pacific warm blob and Atlantic cold blob events. This conducting mechanism has not previously been explored.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jin-Yi Yu, jyyu@uci.edu
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., N. E. Bond, A. J. Miller, and M. J. DeFlorio, 2016: The evolution and known atmospheric forcing mechanisms behind the 2013-2015 North Pacific warm anomalies. US CLIVAR Variations, Vol. 14, No. 2, US CLIVAR, Washington, DC, 1–6, https://usclivar.org/newsletter/newsletters.

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., R. E. Livezey, and M. S. Halpert, 1991: Modulation of Southern Oscillation–Northern Hemisphere mid-winter climate relationships by QBO. J. Climate, 4, 203217, doi:10.1175/1520-0442(1991)004<0203:MOSONH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021, doi:10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 34143420, doi:10.1002/2015GL063306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnidov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. Furtado, M. Barlow, V. Alexeev, and J. Cherry, 2012: Arctic warming, increasing fall snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, doi:10.1088/1748-9326/7/1/014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

  • Delworth, T. L., F. Zenh, G. A. Vecchi, X. Yang, L. Zhang, and R. Zhang, 2016: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci., 9, 509512, doi:10.1038/ngeo2738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, doi:10.1175/JCLI-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change, 6, 10421047, doi:10.1038/nclimate3082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., G. Liguori, and N. Mantua, 2016: Climate interpretation of the North Pacific marine heatwave of 2013-2015. US CLIVAR Variations, Vol. 14, No. 2, US CLIVAR, Washington, DC, 13–18, https://usclivar.org/newsletter/newsletters.

  • Duchez, A., D. Desbruyères, J. J.-M. Hirschi, E. Frajka-Williams, S. Josey, and D. G. Evan, 2016: The tale of a surprisingly cold blob in the North Atlantic. US CLIVAR Variations, Vol. 14, No. 2, US CLIVAR, Washington, DC, 19–23, https://usclivar.org/newsletter/newsletters.

  • Esbensen, S. K., 1984: A comparison of intermonthly and interannual teleconnections in the 700 mb geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 112, 20162032, doi:10.1175/1520-0493(1984)112<2016:ACOIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., and S. B. Feldstein, 2005: The continuum and dynamics of Northern Hemisphere teleconnection patterns. J. Atmos. Sci., 62, 32503267, doi:10.1175/JAS3536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., M. R. Fewings, and M. García-Reyes, 2017: Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett., 44, 312319, doi:10.1002/2016GL071039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, doi:10.1002/2015GL063083.

  • Henson, B., 2016: The North Atlantic blob: A marine cold wave that won’t go away. WunderBlog, Weather Underground, https://www.wunderground.com/blog/JeffMasters/the-north-atlantic-blob-a-marine-cold-wave-that-wont-go-away.html.

  • Hu, Z.-Z., A. Kumar, B. Jha, J. Zhu, and B. Huang, 2017: Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014–16. J. Climate, 30, 689702, doi:10.1175/JCLI-D-16-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffe, D. A., and L. Zhang, 2017: Meteorological anomalies lead to elevated O3 in the western U.S. in June 2015. Geophys. Res. Lett., 44, 19901997, doi:10.1002/2016GL072010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnstone, J. A., and N. J. Mantua, 2014: Atmospheric controls on northeast Pacific temperature variability and change, 1900–2012. Proc. Natl. Acad. Sci. USA, 111, 14 36014 365, doi:10.1073/pnas.1318371111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z.-Z. Hu, 2012: Uncertainty in the ocean-atmosphere feedbacks associated with ENSO in the reanalysis products. Climate Dyn., 39, 575588, doi:10.1007/s00382-011-1104-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., H. Wang, W. Wang, Y. Xue, and Z.-Z. Hu, 2013: Does knowing the oceanic PDO phase help predict the atmospheric anomalies in subsequent months? J. Climate, 26, 12681285, doi:10.1175/JCLI-D-12-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-Y., C.-C. Hong, and H.-H. Hsu, 2015: Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett., 42, 16121618, doi:10.1002/2014GL062956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific decadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medred, C., 2014: Unusual species in Alaska waters indicate parts of Pacific warming dramatically. Alaska Dispatch News, 14 September, http://www.adn.com/article/20140914/unusual-species-alaska-waters-indicate-parts-pacific-warming-dramatically.

  • Mo, K. C., 1985: Interhemisphere correlations statistics during the Northern Hemisphere winter. Proc. Ninth Conf. on Probability and Statistics in Atmospheric Sciences, Virginia Beach, VA, Amer. Meteor. Soc., 283–289.

  • Mo, K. C., and R. E. Livezey, 1986: Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev., 114, 24882515, doi:10.1175/1520-0493(1986)114<2488:TEGHTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 79177932, doi:10.1175/JCLI-D-14-00822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and Coauthors, 2016: Nonlinear response of mid-latitude weather to the changing Arctic. Nat. Climate Change, 6, 992999, doi:10.1038/nclimate3121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panagiotopoulos, F., M. Shahgedanova, and D. B. Stephenson, 2002: A review of Northern Hemisphere winter-time teleconnection patterns. J. Phys. IV France, 12, 1027, doi:10.1051/jp4:20020450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime northern hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, doi:10.1175/JCLI-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, P., and A. Kumar, 2005: A large ensemble analysis of the influence of tropical SSTs on seasonal atmospheric variability. J. Climate, 18, 10681085, doi:10.1175/JCLI-3314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, W., M. Robert, and N. Bond, 2015: The warm Blob continues to dominate the ecosystem of the northern California Current. PICES Press, Vol. 23, No. 2, North Pacific Marine Science Organization, Sidney, BC, Canada, 44–46, https://www.pices.int/publications/pices_press/volume23/PPJuly2015.pdf.

  • Rahmstorf, S., E. B. Jason, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475480, doi:10.1038/nclimate2554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513517, doi:10.1038/ngeo2727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3957, doi:10.1002/joc.3370010106.

  • Schmittner, A., P. Bakker, R. L. Beadling, J. T. M. Lenaerts, S. Mernild, O. Saenko, and D. Swingedouw, 2016: Greenland ice sheet melting influence on the North Atlantic. US CLIVAR Variations, Vol. 14, No. 2, US CLIVAR, Washington, DC, 32–37, https://usclivar.org/newsletter/newsletters.

  • Schneider, N., and B. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373, doi:10.1175/JCLI3527.1.

  • Seager, R., and N. Henderson, 2016: Tropical ocean forcing of the persistent North American west coast ridge of winter 2013/14. J. Climate, 29, 80278048, doi:10.1175/JCLI-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2014: Causes and predictability of the 2011–14 California drought. Assessment Rep., NOAA/OAR/Climate Program Office, 42 pp., http://cpo.noaa.gov/MAPP/californiadroughtreport.

  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, doi:10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siedlecki, S., E. Bjorkstedt, R. Feely, A. Sutton, J. Cross, and J. Newton, 2016: Impact of the Blob on the Northeast Pacific Ocean biogeochemistry and ecosystems. US CLIVAR Variations, Vol. 14, No. 2, US CLIVAR, Washington, DC, 7–12, https://usclivar.org/newsletter/newsletters.

  • Swain, D. L., M. Tsiang, M. Haugen, D. Singh, A. Charland, B. Rajaratnam, and N. S. Diffenbaugh, 2014: The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bull. Amer. Meteor. Soc., 95 (Suppl.), S3S7, doi:10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Swain, D. L., D. E. Horton, D. Singh, and N. S. Diffenbaugh, 2016: Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv., 2, doi:10.1126/sciadv.1501344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the potential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, doi:10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., L. Hipps, R. R. Gillies, and J.-H. Yoon, 2014: Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, 32203226, doi:10.1002/2014GL059748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, F. A., 2015: Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys. Res. Lett., 42, 428431, doi:10.1002/2014GL062634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J., and M. Zhang, 2017: Role of internal atmospheric variability in the 2015 extreme winter climate over the North America Continent. Geophys. Res. Lett., 44, 24642471, doi:10.1002/2017GL072772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., B. Huang, Z.-Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 25112539, doi:10.1007/s00382-010-0954-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., W. M. Kim, and J. Robson, 2016: What caused the Atlantic cold blob of 2015. US CLIVAR Variations, Vol. 14, No. 2, US CLIVAR, Washington, DC, 24–31, https://usclivar.org/newsletter/newsletters.

  • Yu, B., Z. W. Wu, and W. J. Merryfield, 2017: Relationship between North American winter temperature and large-scale atmospheric circulation anomalies and its decadal variation. Environ. Res. Lett., 11, 074001, doi:10.1088/1748-9326/11/7/074001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, doi:10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and Y. Zou, 2013: The enhanced drying effect of central-Pacific El Niño on US winter. Environ. Res. Lett., 8, 014019, doi:10.1088/1748-9326/8/1/014019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, doi:10.1029/2012GL052483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaba, K. D., and D. L. Rudnick, 2016: The 2014–2015 warming anomaly in the Southern California Current System observed by underwater gliders. Geophys. Res. Lett., 43, 12411248, doi:10.1002/2015GL067550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Y., J.-Y. Yu, T. Lee, M.-M. Lu, and S. T. Kim, 2014: CMIP5 model simulations of the impacts of the two types of El Niño on the U.S. winter temperature. J. Geophys. Res. Atmos., 119, 30763092, doi:10.1002/2013JD021064.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2941 1331 71
PDF Downloads 1710 453 19