Contributions of Climate Feedbacks to Changes in Atmospheric Circulation

Paulo Ceppi Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Paulo Ceppi in
Current site
Google Scholar
PubMed
Close
and
Theodore G. Shepherd Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Theodore G. Shepherd in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The projected response of the atmospheric circulation to the radiative changes induced by CO2 forcing and climate feedbacks is currently uncertain. In this modeling study, the impact of CO2-induced climate feedbacks on changes in jet latitude and speed is assessed by imposing surface albedo, cloud, and water vapor feedbacks as if they were forcings in two climate models, CAM4 and ECHAM6. The jet response to radiative feedbacks can be broadly interpreted through changes in midlatitude baroclinicity. Clouds enhance baroclinicity, favoring a strengthened, poleward-shifted jet; this is mitigated by surface albedo changes, which have the opposite effect on baroclinicity and the jet, while water vapor has opposing effects on upper- and lower-level baroclinicity with little net impact on the jet. Large differences between the CAM4 and ECHAM6 responses illustrate how model uncertainty in radiative feedbacks causes a large spread in the baroclinicity response to CO2 forcing. Across the CMIP5 models, differences in shortwave feedbacks by clouds and albedo are a dominant contribution to this spread. Forcing CAM4 with shortwave cloud and albedo feedbacks from a representative set of CMIP5 models yields a wide range of jet responses that strongly correlate with the meridional gradient of the anomalous shortwave heating and the associated baroclinicity response. Differences in shortwave feedbacks statistically explain about 50% of the intermodel spread in CMIP5 jet shifts for the set of models used, demonstrating the importance of constraining radiative feedbacks for accurate projections of circulation changes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paulo Ceppi, p.ceppi@reading.ac.uk

Abstract

The projected response of the atmospheric circulation to the radiative changes induced by CO2 forcing and climate feedbacks is currently uncertain. In this modeling study, the impact of CO2-induced climate feedbacks on changes in jet latitude and speed is assessed by imposing surface albedo, cloud, and water vapor feedbacks as if they were forcings in two climate models, CAM4 and ECHAM6. The jet response to radiative feedbacks can be broadly interpreted through changes in midlatitude baroclinicity. Clouds enhance baroclinicity, favoring a strengthened, poleward-shifted jet; this is mitigated by surface albedo changes, which have the opposite effect on baroclinicity and the jet, while water vapor has opposing effects on upper- and lower-level baroclinicity with little net impact on the jet. Large differences between the CAM4 and ECHAM6 responses illustrate how model uncertainty in radiative feedbacks causes a large spread in the baroclinicity response to CO2 forcing. Across the CMIP5 models, differences in shortwave feedbacks by clouds and albedo are a dominant contribution to this spread. Forcing CAM4 with shortwave cloud and albedo feedbacks from a representative set of CMIP5 models yields a wide range of jet responses that strongly correlate with the meridional gradient of the anomalous shortwave heating and the associated baroclinicity response. Differences in shortwave feedbacks statistically explain about 50% of the intermodel spread in CMIP5 jet shifts for the set of models used, demonstrating the importance of constraining radiative feedbacks for accurate projections of circulation changes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paulo Ceppi, p.ceppi@reading.ac.uk
Save
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in ghost forcing experiments without sea ice feedbacks. Climate Dyn., 24, 655666, doi:10.1007/s00382-005-0018-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., 2011: Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere. Meteor. Appl., 18, 324333, doi:10.1002/met.285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., and P. M. Forster, 2008: CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys. Res. Lett., 35, L04802, doi:10.1029/2007GL032273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2011: Rossby wave scales, propagation, and the variability of eddy-driven jets. J. Atmos. Sci., 68, 28932908, doi:10.1175/JAS-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657, doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 2015: Insights into low-latitude cloud feedbacks from high-resolution models. Philos. Trans. Roy. Soc., 373A, 33543360, doi:10.1098/rsta.2014.0415.

    • Search Google Scholar
    • Export Citation
  • Brient, F., and T. Schneider, 2016: Constraints on climate sensitivity from space-based measurements of low-cloud reflection. J. Climate, 29, 58215835, doi:10.1175/JCLI-D-15-0897.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brient, F., T. Schneider, Z. Tan, S. Bony, X. Qu, and A. Hall, 2016: Shallowness of tropical low clouds as a predictor of climate models’ response to warming. Climate Dyn., 47, 433449, doi:10.1007/s00382-015-2846-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., M. D. Zelinka, K. E. Taylor, and K. Marvel, 2016: Quantifying the sources of intermodel spread in equilibrium climate sensitivity. J. Climate, 29, 513524, doi:10.1175/JCLI-D-15-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude dynamics: A review. Curr. Climate Change Rep., 1, 94102, doi:10.1007/s40641-015-0010-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric circulation response to warming. J. Climate, 29, 783799, doi:10.1175/JCLI-D-15-0394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y.-T. Hwang, D. M. W. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, doi:10.1029/2012GL053115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, doi:10.1002/2014GL060043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., D. L. Hartmann, and M. J. Webb, 2016a: Mechanisms of the negative shortwave cloud feedback in middle to high latitudes. J. Climate, 29, 139157, doi:10.1175/JCLI-D-15-0327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., D. T. McCoy, and D. L. Hartmann, 2016b: Observational evidence for a negative shortwave cloud feedback in middle to high latitudes. Geophys. Res. Lett., 43, 13311339, doi:10.1002/2015GL067499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, doi:10.1029/JD095iD10p16601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., R. A. Plumb, and J. Lu, 2010: Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua-planet model. Geophys. Res. Lett., 37, L12701, doi:10.1029/2010GL043473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865873, doi:10.1007/s00382-003-0310-z.

  • Colman, R., and B. J. McAvaney, 1997: A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments. J. Geophys. Res., 102, 19 38319 402, doi:10.1029/97JD00206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dal Gesso, S., J. J. van der Dussen, A. P. Siebesma, S. R. de Roode, I. A. Boutle, Y. Kamae, R. Roehrig, and J. Vial, 2015: A single-column model intercomparison on the stratocumulus representation in present-day and future climate. J. Adv. Model. Earth Syst., 7, 617647, doi:10.1002/2014MS000377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twenty-first-century projections. J. Climate, 26, 49304946, doi:10.1175/JCLI-D-12-00359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, doi:10.1175/JCLI-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., and S. A. Klein, 2014: Low-cloud optical depth feedback in climate models. J. Geophys. Res., 119, 60526065, doi:10.1002/2013JD021052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, doi:10.1007/s00382-009-0535-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J., and M. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 5871, doi:10.1175/2007JCLI1834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and B. Medeiros, 2016: Understanding the varied influence of midlatitude jet position on clouds and cloud radiative effects in observations and global climate models. J. Climate, 29, 90059025, doi:10.1175/JCLI-D-16-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2016: Is climate sensitivity related to dynamical sensitivity? J. Geophys. Res., 121, 51595176, doi:10.1002/2015JD024687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophys. Res. Lett., 40, 36883692, doi:10.1002/grl.50675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and S. Manabe, 1999: The role of water vapor feedback in unperturbed climate variability and global warming. J. Climate, 12, 23272346, doi:10.1175/1520-0442(1999)012<2327:TROWVF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, doi:10.1029/2005GL025127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, doi:10.1029/96JD03436.

  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29, 1951, doi:10.1029/2002GL015835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2014: Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Climate Dyn., 43, 11711182, doi:10.1007/s00382-013-1883-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., H. Dacre, R. Forbes, K. Hodges, L. Shaffrey, and T. Stein, 2017: Using satellite and reanalysis data to evaluate the representation of latent heating in extratropical cyclones in a climate model. Climate Dyn., 48, 22552278, doi:10.1007/s00382-016-3204-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, doi:10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and K. M. Shell, 2012: Using relative humidity as a state variable in climate feedback analysis. J. Climate, 25, 25782582, doi:10.1175/JCLI-D-11-00721.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingram, W., 2010: A very simple model for the water vapour feedback on climate change. Quart. J. Roy. Meteor. Soc., 136, 3040, doi:10.1002/qj.546.

  • Ingram, W., 2013: A new way of quantifying GCM water vapour feedback. Climate Dyn., 40, 913924, doi:10.1007/s00382-012-1294-3.

  • Kay, J. E., B. Medeiros, Y.-T. Hwang, A. Gettelman, J. Perket, and M. G. Flanner, 2014: Processes controlling Southern Ocean shortwave climate feedbacks in CESM. Geophys. Res. Lett., 41, 616622, doi:10.1002/2013GL058315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, doi:10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., S. M. Dean, J. A. Renwick, and G. K. Vallis, 2010: A robust increase in the eddy length scale in the simulation of future climates. Geophys. Res. Lett., 37, L03806, doi:10.1029/2009GL041615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and A. Hall, 2015: Emergent constraints for cloud feedbacks. Curr. Climate Change Rep., 1, 276287, doi:10.1007/s40641-015-0027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., R. G. Graversen, D. Klocke, P. L. Langen, B. Stevens, and L. Tomassini, 2013: Climate feedback efficiency and synergy. Climate Dyn., 41, 25392554, doi:10.1007/s00382-013-1808-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res. Atmos., 120, 95399554, doi:10.1002/2015JD023603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., R. Eastman, D. L. Hartmann, and R. Wood, 2017: The change in low cloud cover in a warmed climate inferred from AIRS, MODIS, and ECMWF-Interim. J. Climate, 30, 36093620, doi:10.1175/JCLI-D-15-0734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., D. L. Williamson, and J. G. Olson, 2016: Reference aquaplanet climate in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst., 8, 406424, doi:10.1002/2015MS000593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note TN-485, 212 pp.

  • Neggers, R. A. J., 2015: Attributing the behavior of low-level clouds in large-scale models to subgrid-scale parameterizations. J. Adv. Model. Earth Syst., 7, 20292043, doi:10.1002/2015MS000503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, doi:10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Previdi, M., and B. G. Liepert, 2012: The vertical distribution of climate forcings and feedbacks from the surface to top of atmosphere. Climate Dyn., 39, 941951, doi:10.1007/s00382-011-1233-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., and A. Hall, 2014: On the persistent spread in snow-albedo feedback. Climate Dyn., 42, 6981, doi:10.1007/s00382-013-1774-0.

  • Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2014: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dyn., 42, 26032626, doi:10.1007/s00382-013-1945-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and A. M. DeAngelis, 2015: Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett., 42, 77677775, doi:10.1002/2015GL065627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieck, M., L. Nuijens, and B. Stevens, 2012: Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. J. Atmos. Sci., 69, 25382550, doi:10.1175/JAS-D-11-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ring, M. J., and R. A. Plumb, 2008: The response of a simplified GCM to axisymmetric forcings: Applicability of the fluctuation–dissipation theorem. J. Atmos. Sci., 65, 38803898, doi:10.1175/2008JAS2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., N. Feldl, K. C. Armour, Y.-T. Hwang, and D. M. W. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, doi:10.1038/ngeo2346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., B. P. Kirtman, and R. S. Lindzen, 1999: Tropospheric water vapor and climate sensitivity. J. Atmos. Sci., 56, 16491658, doi:10.1175/1520-0469(1999)056<1649:TWVACS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, doi:10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, doi:10.1038/nature12829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. F. Scinocca, 2010: The influence of the basic state on the Northern Hemisphere circulation response to climate change. J. Climate, 23, 14341446, doi:10.1175/2009JCLI3167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and L. M. Polvani, 2016: Revisiting the relationship between jet position, forced response and annular mode variability in the southern midlatitudes. Geophys. Res. Lett., 43, 28962903, doi:10.1002/2016GL067989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., R. Seager, M. Ting, and T. A. Shaw, 2015: Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Climate Change, 6, 6570, doi:10.1038/nclimate2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, doi:10.1175/2007JCLI2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 10531054, doi:10.1126/science.1237554.

  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, doi:10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113126, doi:10.1007/s00382-006-0127-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, doi:10.1007/s00382-013-1725-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, doi:10.1038/ngeo2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2016: Impact of regional atmospheric cloud radiative changes on shifts of the extratropical jet stream in response to global warming. J. Climate, 29, 83998421, doi:10.1175/JCLI-D-16-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C. J., and D. L. Hartmann, 2015: On the influence of poleward jet shift on shortwave cloud feedback in global climate models. J. Adv. Model. Earth Syst., 7, 20442059, doi:10.1002/2015MS000520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., and T. G. Shepherd, 2017: Storylines of atmospheric circulation change for European regional climate impact assessment. J. Climate, 30, 65616577, doi:10.1175/JCLI-D-16-0807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., B. J. Hoskins, and T. G. Shepherd, 2015: Improving climate change detection through optimal seasonal averaging: The case of the North Atlantic jet and European precipitation. J. Climate, 28, 63816397, doi:10.1175/JCLI-D-14-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 37363754, doi:10.1175/JCLI-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1572 624 31
PDF Downloads 542 85 5