On the Spatial Gradient of Soil Moisture–Precipitation Feedback Strength in the April 2011 Drought in the Southern Great Plains

Hua Su Department of Geological Sciences, The John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Hua Su in
Current site
Google Scholar
PubMed
Close
and
Robert E. Dickinson Department of Geological Sciences, The John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Robert E. Dickinson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The southern Great Plains (SGP) experienced a record-breaking drought in 2011, in which the excessively dry conditions established quickly in spring (i.e., April) and extended into summer. A regional climate model is used (after its evaluation) to simulate this April drought and investigate how a soil moisture anomaly could affect the development of its precipitation deficit. The authors examine how the local thermodynamic structure of the overlying atmosphere contributes to soil moisture feedbacks and how these feedbacks are connected to nonlocal mechanisms. The simulations establish a zonal gradient in the (generally positive) feedback strength [i.e., a significant (negligible) precipitation increase over the eastern (western) SGP] under an SGP-wide wet soil moisture anomaly and spatially similar evapotranspiration (ET) increments. This pattern is dominated by convective precipitation and consistent with spatial gradients in parameters relevant to moist convection, including the precipitable water, the low-level instability and humidity, and the local cloud water content. All these variables are sensitive to a wet soil moisture anomaly, but precipitation responds differently to their changes in different locations. Furthermore, the impacts of the soil moisture anomaly on various large-scale atmospheric fields are related to the spatial structure of feedback strength. Additionally, the weaker feedback over the western SGP occurs in a region of relatively strong subsidence and changes little with a westward expansion of the anomaly area, whereas nonlocal soil moisture impacts—in particular, moisture advection from the west—are important for the stronger feedback over the eastern SGP.

Corresponding author e-mail: Robert E. Dickinson, robted@jsg.utexas.edu

Abstract

The southern Great Plains (SGP) experienced a record-breaking drought in 2011, in which the excessively dry conditions established quickly in spring (i.e., April) and extended into summer. A regional climate model is used (after its evaluation) to simulate this April drought and investigate how a soil moisture anomaly could affect the development of its precipitation deficit. The authors examine how the local thermodynamic structure of the overlying atmosphere contributes to soil moisture feedbacks and how these feedbacks are connected to nonlocal mechanisms. The simulations establish a zonal gradient in the (generally positive) feedback strength [i.e., a significant (negligible) precipitation increase over the eastern (western) SGP] under an SGP-wide wet soil moisture anomaly and spatially similar evapotranspiration (ET) increments. This pattern is dominated by convective precipitation and consistent with spatial gradients in parameters relevant to moist convection, including the precipitable water, the low-level instability and humidity, and the local cloud water content. All these variables are sensitive to a wet soil moisture anomaly, but precipitation responds differently to their changes in different locations. Furthermore, the impacts of the soil moisture anomaly on various large-scale atmospheric fields are related to the spatial structure of feedback strength. Additionally, the weaker feedback over the western SGP occurs in a region of relatively strong subsidence and changes little with a westward expansion of the anomaly area, whereas nonlocal soil moisture impacts—in particular, moisture advection from the west—are important for the stronger feedback over the eastern SGP.

Corresponding author e-mail: Robert E. Dickinson, robted@jsg.utexas.edu
Save
  • Beljaars, A. C. M., P. Viterbo, M. Miller, and A. Betts, 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362383, doi:10.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and W. Y. Sun, 1999: Numerical simulation of the 1993 midwestern flood: Land–atmosphere interactions. J. Climate, 12, 14901505, doi:10.1175/1520-0442(1999)012<1490:NSOTMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., and P. Kumar, 2008a: Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part I: Central U.S. plains ecoregion. J. Climate, 21, 51655186, doi:10.1175/2008JCLI1756.1.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., and P. Kumar, 2008b: Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part II: North American monsoon region. J. Climate, 21, 51875203, doi:10.1175/2008JCLI1760.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, doi:10.1029/97WR03499.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 1997: An analysis of the soil moisture–rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725735, doi:10.1029/96WR03756.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, doi:10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, doi:10.1175/JCLI4288.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., L. Mearns, C. Shields, and L. Mayer, 1996: A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central United States. J. Climate, 9, 11501162, doi:10.1175/1520-0442(1996)009<1150:ARMSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp., doi:10.5065/D60Z716B.

  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, doi:10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and E. Kalnay, 2002: The 1998 Oklahoma–Texas drought: Mechanistic experiments with NCEP global and regional models. J. Climate, 15, doi:10.1175/1520-0442(2002)015<0945:TOTDME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., G.-Y. Niu, and Z.-L. Yang, 2009: Impacts of vegetation and groundwater dynamics on warm season precipitation over the central United States. J. Geophys. Res., 114, D06109, doi:10.1029/2008JD010756.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., E. H. Berbery, K. E. Mitchell, and A. K. Betts, 2007: Relationships between land surface and near-surface atmospheric variables in the NCEP North American Regional Reanalysis. J. Hydrometeor., 8, 11841203, doi:10.1175/2007JHM844.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Myoung, B., and J. W. Nielsen-Gammon, 2010a: The convective instability pathway to warm season drought in Texas. Part I: The role of convective inhibition and its modulation by soil moisture. J. Climate, 23, 44614473, doi:10.1175/2010JCLI2946.1.

    • Search Google Scholar
    • Export Citation
  • Myoung, B., and J. W. Nielsen-Gammon, 2010b: The convective instability pathway to warm season drought in Texas. Part II: Free-tropospheric modulation of convective inhibition. J. Climate, 23, 44744488, doi:10.1175/2010JCLI2947.1.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1991: Spring and summer 1988 drought over the contiguous United States—Causes and prediction. J. Climate, 4, 5465, doi:10.1175/1520-0442(1991)004<0054:SASDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., 2012: The 2011 Texas drought. Texas Water J., 3, 5995.

  • Pal, J. S., and E. A. B. Eltahir, 2002: Teleconnections of soil moisture and rainfall during the 1993 midwest summer flood. Geophys. Res. Lett., 29, 1865, doi:10.1029/2002GL014815.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2003: A feedback mechanism between soil-moisture distribution and storm tracks. Quart. J. Roy. Meteor. Soc., 129, 22792297, doi:10.1256/qj.01.201.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. D. Peters-Lidard, and S. V. Kumar, 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, doi:10.1175/JHM-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Siqueira, M., G. Katul, and A. Porporato, 2009: Soil moisture feedbacks on convection triggers: The role of soil–plant hydrodynamics. J. Hydrometeor., 10, 96112, doi:10.1175/2008JHM1027.1.

    • Search Google Scholar
    • Export Citation
  • Su, H., R. E. Dickinson, K. L. Findell, and B. R. Lintner, 2013: How are spring snow conditions in central Canada related to early warm-season precipitation? J. Hydrometeor., 14, 787807, doi:10.1175/JHM-D-12-029.1.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34, L07711, doi:10.1029/2006GL028001.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., K. W. Tai, and D. J. Gochis, 2009: Effects of initial soil moisture on rainfall generation and subsequent hydrologic response during the North American monsoon. J. Hydrometeor., 10, 644664, doi:10.1175/2008JHM1069.1.

    • Search Google Scholar
    • Export Citation
  • Wei, J., and P. A. Dirmeyer, 2012: Dissecting soil moisture–precipitation coupling. Geophys. Res. Lett., 39, L19711, doi:10.1029/2012GL053038.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1132 705 171
PDF Downloads 326 48 5