Dynamical and Thermodynamical Impacts of High- and Low-Frequency Atmospheric Eddies on the Initial Melt of Arctic Sea Ice

Bradley M. Hegyi School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Bradley M. Hegyi in
Current site
Google Scholar
PubMed
Close
and
Yi Deng School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Yi Deng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of high-frequency and low-frequency eddies in the melt onset of Arctic sea ice is investigated through an examination of eddy effects on lower-tropospheric (1000–500 hPa) meridional heat transport into the Arctic and local surface downwelling shortwave and longwave radiation. Total and eddy components of the meridional heat transport into the Arctic from 1979 to 2012 are calculated from reanalysis data, and surface radiation data are acquired from the NASA Clouds and the Earth’s Radiant Energy System (CERES) project dataset. There is a significant positive correlation between the mean initial melt date and the September sea ice minimum extent, with each quantity characterized by a negative trend. Spatially, the earlier mean melt onset date is primarily found in a region bounded by 90°E and 130°W. The decline in this region is steplike and not associated with an increase in meridional heat transport but with an earlier appearance of above-freezing temperatures in the troposphere. In most years, discrete short-duration episodes of melt onset over a large area occur. In an investigation of two of these melt episodes, a positive total meridional heat transport is associated with the peak melt, with the product of high-frequency eddy wind and mean temperature fields being the most important contributor. Additionally, there is a key positive anomaly in surface downwelling longwave radiation immediately preceding the peak melt that is associated with increased cloud cover and precipitable water. These results suggest the importance of carefully considering and properly representing atmospheric eddies when modeling the melt onset of Arctic sea ice.

Corresponding author e-mail: Bradley M. Hegyi, bradley.m.hegyi@nasa.gov; Yi Deng, yi.deng@eas.gatech.edu

Abstract

The role of high-frequency and low-frequency eddies in the melt onset of Arctic sea ice is investigated through an examination of eddy effects on lower-tropospheric (1000–500 hPa) meridional heat transport into the Arctic and local surface downwelling shortwave and longwave radiation. Total and eddy components of the meridional heat transport into the Arctic from 1979 to 2012 are calculated from reanalysis data, and surface radiation data are acquired from the NASA Clouds and the Earth’s Radiant Energy System (CERES) project dataset. There is a significant positive correlation between the mean initial melt date and the September sea ice minimum extent, with each quantity characterized by a negative trend. Spatially, the earlier mean melt onset date is primarily found in a region bounded by 90°E and 130°W. The decline in this region is steplike and not associated with an increase in meridional heat transport but with an earlier appearance of above-freezing temperatures in the troposphere. In most years, discrete short-duration episodes of melt onset over a large area occur. In an investigation of two of these melt episodes, a positive total meridional heat transport is associated with the peak melt, with the product of high-frequency eddy wind and mean temperature fields being the most important contributor. Additionally, there is a key positive anomaly in surface downwelling longwave radiation immediately preceding the peak melt that is associated with increased cloud cover and precipitable water. These results suggest the importance of carefully considering and properly representing atmospheric eddies when modeling the melt onset of Arctic sea ice.

Corresponding author e-mail: Bradley M. Hegyi, bradley.m.hegyi@nasa.gov; Yi Deng, yi.deng@eas.gatech.edu
Save
  • Belchansky, G. I., D. C. Douglas, and N. G. Platonov, 2004: Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979–2001. J. Climate, 17, 6780, doi:10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bliss, A. C., and M. R. Anderson, 2014: Snowmelt onset over Arctic sea ice from passive microwave data: 1979–2012. Cryosphere, 8, 20892100, doi:10.5194/tc-8-2089-2014.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic Sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Dong, X. Q., B. J. Zib, B. Xi, R. Stanfield, Y. Deng, X. Zhang, B. Lin, and C. N. Long, 2014: Critical mechanisms for the formation of extreme Arctic sea-ice extent in the summers of 2007 and 1996. Climate Dyn., 43, 5370, doi:10.1007/s00382-013-1920-8.

    • Search Google Scholar
    • Export Citation
  • Drobot, S. D., and M. R. Anderson, 2001: An improved method for determining snowmelt onset dates over Arctic sea ice using scanning multichannel microwave radiometer and Special Sensor Microwave/Imager data. J. Geophys. Res., 106, 24 03324 049, doi:10.1029/2000JD000171.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2010: Interannual variations of Arctic cloud types in relation to sea ice. J. Climate, 23, 42164232, doi:10.1175/2010JCLI3492.1.

    • Search Google Scholar
    • Export Citation
  • Else, B. G. T., T. N. Papakyriakou, R. Raddatz, R. J. Galley, C. J. Mundy, D. G. Barber, K. Swystun, and S. Rysgaard, 2014: Surface energy budget of landfast sea ice during the transitions from winter to snowmelt and melt pond onset: The importance of net longwave radiation and cyclone forcings. J. Geophys. Res. Oceans, 119, 36793693, doi:10.1002/2013JC009672.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, S. Drijfhout, M. Tjernstrom, and S. Martensson, 2011: Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Climate Dyn., 36, 21032112, doi:10.1007/s00382-010-0809-z.

    • Search Google Scholar
    • Export Citation
  • Herman, G., and R. Goody, 1976: Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci., 33, 15371554, doi:10.1175/1520-0469(1976)033<1537:FAPOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and T. L’Ecuyer, 2013: Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. J. Geophys. Res. Atmos., 118, 72197236, doi:10.1002/jgrd.50489.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., A. Kumar, G. D. Bell, M. S. Halpert, and R. W. Higgins, 2008: Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett., 35, L20701, doi:10.1029/2008GL035205.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Markus, T., J. C. Stroeve, and J. Miller, 2009: Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res., 114, C12024, doi:10.1029/2009JC005436.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery, 2007: A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett., 34, L24501, doi:10.1029/2007GL032043.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and A. H. Oort, 1988: Atmospheric heat budgets of the polar regions. J. Geophys. Res., 93, 95109524, doi:10.1029/JD093iD08p09510.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., and J. M. Wallace, 2012: The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011. Geophys. Res. Lett., 39, L09704, doi:10.1029/2012GL051330.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., I. G. Rigor, M. G. McPhee, and J. M. Wallace, 2008: Summer retreat of Arctic sea ice: Role of summer winds. Geophys. Res. Lett., 35, L24701, doi:10.1029/2008GL035672.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19, doi:10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Perovich, D. K., and C. Polashenski, 2012: Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett., 39, L08501, doi:10.1029/2012GL051432.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., S. V. Nghiem, T. Markus, and A. Schweiger, 2007: Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice–ocean system. J. Geophys. Res., 112, C03005, doi:10.1029/2006JC003558.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., 2012: Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA. Climate Dyn., 39, 13491371, doi:10.1007/s00382-011-1196-9.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic oscillation. J. Climate, 15, 26482663, doi:10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., F. G. Rose, N. M. Smith, and T. P. Charlock, 2001: Validation data set for CERES Surface and Atmospheric Radiation Budget (SARB). GEWEX Newsletter, No. 1, International GEWEX Project Office, Silver Spring, MD, 11–12.

  • Screen, J. A., I. Simmonds, and K. Keay, 2011: Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res., 116, D15105, doi:10.1029/2011JD015847.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, doi:10.1029/2005GL025624.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, doi:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., T. Markus, L. Boisvert, J. Miller, and A. Barrett, 2014: Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett., 41, 12161225, doi:10.1002/2013GL058951.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., M. Cai, A. X. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 70237043, doi:10.1175/JCLI-D-12-00696.1.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2012: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 12, 68636889, doi:10.5194/acp-12-6863-2012.

    • Search Google Scholar
    • Export Citation
  • Ukita, J., M. Honda, H. Nakamura, Y. Tachibana, D. J. Cavalieri, C. L. Parkinson, H. Koide, and K. Yamamoto, 2007: Northern Hemisphere sea ice variability: Lag structure and its implications. Tellus, 59A, 261272, doi:10.1111/j.1600-0870.2006.00223.x.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Zhang, E. Watanabe, M. Ikeda, K. Mizobata, J. E. Walsh, X. Bai, and B. Wu, 2009: Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett., 6, L05706, doi:10.1029/2008GL036706.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, K., Y. Tachibana, M. Honda, and J. Ukita, 2006: Intra-seasonal relationship between the Northern Hemisphere sea ice variability and the North Atlantic Oscillation. Geophys. Res. Lett., 33, L22701, doi:10.1029/2006GL026286.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, M. Steele, and A. Schweiger, 2008: What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys. Res. Lett., 35, L11505, doi:10.1029/2008GL034005.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., M. Ikeda, and J. E. Walsh, 2003: Arctic sea ice and freshwater changes driven by the atmospheric leading mode in a coupled sea ice–ocean model. J. Climate, 16, 21592177, doi:10.1175/2758.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Recent radical shifts in atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, doi:10.1029/2008GL035607.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 919 584 199
PDF Downloads 297 65 9