Seasonal Differences in Precipitation Sensitivity to Soil Moisture in Bangladesh and Surrounding Regions

Shiori Sugimoto Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Shiori Sugimoto in
Current site
Google Scholar
PubMed
Close
and
Hiroshi G. Takahashi Department of Geography, Tokyo Metropolitan University, Tokyo, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Hiroshi G. Takahashi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation sensitivity to soil moisture and its seasonal and diurnal changes are investigated in Bangladesh and surrounding regions using a regional climate model with a 5-km grid spacing. In the control experiment, soil moisture is calculated by a land surface scheme, and simulated accuracy of seasonal and diurnal variations in precipitation intensity and frequency is capable of assessing the soil moisture impact on precipitation. In sensitivity experiments with wetter land surfaces, daytime precipitation intensity decreases over the southern plains for both the premonsoon and mature monsoon seasons because of the weakening of surface heating and vertical mixing in the planetary boundary layer (PBL). Weakened vertical turbulent flux of moisture reduces condensation heating and upward motion in the mid- and upper troposphere, which suppresses development of convective precipitation. The simulated precipitation intensity response to soil moisture suggests that land surface wetness contributes to the seasonal contrast in observed precipitation intensity (i.e., stronger in the premonsoon than the mature monsoon seasons). Meanwhile, the precipitation frequency response to soil moisture varies with season and by region. Over the southern plains in the wet land surface experiments, daytime precipitation frequency decreases (increases) during the premonsoon (mature monsoon) season compared with the dry land surface experiments, as influenced by seasonal differences in relative humidity and the condensation process in the lower troposphere. Around the northern mountainous area, higher soil moisture increases precipitation frequency regardless of season because of additional water vapor supply from the ground and frequent orographic precipitation forced by the mountainous topography.

Corresponding author e-mail: Shiori Sugimoto, shiorisug@jamstec.go.jp

Abstract

Precipitation sensitivity to soil moisture and its seasonal and diurnal changes are investigated in Bangladesh and surrounding regions using a regional climate model with a 5-km grid spacing. In the control experiment, soil moisture is calculated by a land surface scheme, and simulated accuracy of seasonal and diurnal variations in precipitation intensity and frequency is capable of assessing the soil moisture impact on precipitation. In sensitivity experiments with wetter land surfaces, daytime precipitation intensity decreases over the southern plains for both the premonsoon and mature monsoon seasons because of the weakening of surface heating and vertical mixing in the planetary boundary layer (PBL). Weakened vertical turbulent flux of moisture reduces condensation heating and upward motion in the mid- and upper troposphere, which suppresses development of convective precipitation. The simulated precipitation intensity response to soil moisture suggests that land surface wetness contributes to the seasonal contrast in observed precipitation intensity (i.e., stronger in the premonsoon than the mature monsoon seasons). Meanwhile, the precipitation frequency response to soil moisture varies with season and by region. Over the southern plains in the wet land surface experiments, daytime precipitation frequency decreases (increases) during the premonsoon (mature monsoon) season compared with the dry land surface experiments, as influenced by seasonal differences in relative humidity and the condensation process in the lower troposphere. Around the northern mountainous area, higher soil moisture increases precipitation frequency regardless of season because of additional water vapor supply from the ground and frequent orographic precipitation forced by the mountainous topography.

Corresponding author e-mail: Shiori Sugimoto, shiorisug@jamstec.go.jp
Save
  • Ahmed, R., and S. Karmakar, 1993: Arrival and withdrawal dates of the summer monsoon in Bangladesh. Int. J. Climatol., 13, 727–740, doi:10.1002/joc.3370130703.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and T. J. Lang, 2003: Monitoring the monsoon in the Himalayas: Observations in central Nepal, June 2001. Mon. Wea. Rev., 131, 1408–1427, doi:10.1175/1520-0493(2003)131<1408:MTMITH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and N. Kalthoff, 2011: A numerical sensitivity study on the impact of soil moisture on convection-related parameters and convective precipitation over complex terrain. J. Atmos. Sci., 68, 2971–2987, doi:10.1175/JAS-D-11-027.1.

    • Search Google Scholar
    • Export Citation
  • Berg, A., B. R. Lintner, K. L. Findell, S. Malyshev, P. C. Loikith, and P. Gentine, 2014: Impact of soil moisture–atmosphere interactions on surface temperature distribution. J. Climate, 27, 7976–7993, doi:10.1175/JCLI-D-13-00591.1.

    • Search Google Scholar
    • Export Citation
  • Boers, N., B. Bookhagen, N. Marwan, and J. Kurths, 2016: Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes mountain range. Climate Dyn., 46, 601–617, doi:10.1007/s00382-015-2601-6.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33, 1382–1401, doi:10.1175/1520-0450(1994)033<1382:IOLSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., and W. R. Cotton, 2004: Sensitivity of a cloud-resolving simulation of the genesis of a mesoscale convective system to horizontal heterogeneities in soil moisture initialization. J. Hydrometeor., 5, 934–958, doi:10.1175/1525-7541(2004)005<0934:SOACSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, C. A., and R. W. Arritt, 1995: Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J. Appl. Meteor., 34, 2029–2045, doi:10.1175/1520-0450(1995)034<2029:NSOTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., M. S. Lin, R. L. McAnelly, and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. Mon. Wea. Rev., 117, 765–783, doi:10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M., and L. Mahrt, 1994: Daytime evolution of relative humidity at the boundary layer top. Mon. Wea. Rev., 122, 2709–2721, doi:10.1175/1520-0493(1994)122<2709:DEORHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 86–99, doi:10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552–569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, R., and W. Li, 2004: The influence of the land surface on the transition from dry to wet season in Amazonia. Theor. Appl. Climatol., 78, 97–110, doi:10.1007/s00704-004-0046-7.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., L. O. Mearns, C. Shields, and L. Mayer, 1996: A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central United States. J. Climate, 9, 1150–1162, doi:10.1175/1520-0442(1996)009<1150:ARMSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 5003–5020, doi:10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 38–55, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Islam, M. N., and H. Uyeda, 2008: Vertical variations of rain intensity in different rainy periods in and around Bangladesh derived from TRMM observations. Int. J. Climatol., 28, 273–279, doi:10.1002/joc.1585.

    • Search Google Scholar
    • Export Citation
  • Islam, M. N., T. Hayashi, H. Uyeda, T. Terao, and K. Kikuchi, 2004: Diurnal variations of cloud activity in Bangladesh and north of the Bay of Bengal in 2000. Remote Sens. Environ., 90, 378–388, doi:10.1016/j.rse.2004.01.011.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, H., T. Sato, T. Nii, F. Kimura, K. Nakagawa, I. Kaihotsu, and T. Koike, 2008: Diurnal variation of convective activity and precipitable water around Ulaanbaator, Mongolia, and the impact of soil moisture on convective activity during nighttime. Mon. Wea. Rev., 136, 1401–1415, doi:10.1175/2007MWR2062.1.

    • Search Google Scholar
    • Export Citation
  • Kamiguchi, K., O. Arakawa, A. Kitoh, A. Yatagai, A. Hamada, and N. Yasutomi, 2010: Development of APHRO_JP, the first Japanese high-resolution daily precipitation product for more than 100 years. Hydrol. Res. Lett., 4, 60–64, doi:10.3178/hrl.4.60.

    • Search Google Scholar
    • Export Citation
  • Kataoka, A., and T. Satomura, 2005: Numerical simulation on the diurnal variation of precipitation over northeastern Bangladesh: A case study of an active period 14–21 June 1995. SOLA, 1, 205–208, doi:10.2151/sola.2005-053.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y.-M., A. Ohta, M. Katsumata, S. Mori, S. Satoh, and H. Ueda, 2005: Seasonal transition of predominant precipitation type and lightning activity over tropical monsoon areas derived from TRMM observations. Geophys. Res. Lett., 32, L14710, doi:10.1029/2005GL022986.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 3331–3341, doi:10.1175/2008JCLI2718.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective systems over the Americas. Mon. Wea. Rev., 111, 1475–1493, doi:10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Murata, F., T. Terao, T. Hayashi, H. Asada, and J. Matsumoto, 2008: Relationship between atmospheric conditions at Dhaka, Bangladesh, and rainfall at Cherrapunjee, India. Nat. Hazards, 44, 399–410, doi:10.1007/s11069-007-9125-2.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model: Its design and verification. Bound.-Layer Meteor., 112, 1–31, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advecting fog. Bound.-Layer Meteor., 119, 397–407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Ohsawa, T., H. Ueda, T. Hayashi, A. Watanabe, and J. Matsumoto, 2001: Diurnal variations of convective activity and rainfall in tropical Asia. J. Meteor. Soc. Japan, 79, 333–352, doi:10.2151/jmsj.79.333.

    • Search Google Scholar
    • Export Citation
  • Okumura, K., T. Satomura, T. Oki, and W. Khantiyanan, 2003: Diurnal variation of precipitation by moving mesoscale systems: Radar observations in northern Thailand. Geophys. Res. Lett., 30, 2073, doi:10.1029/2003GL018302.

    • Search Google Scholar
    • Export Citation
  • Ono, M., and H. G. Takahashi, 2016: Seasonal transition of precipitation characteristics associated with land surface conditions in and around Bangladesh. J. Geophys. Res. Atmos., 121, 11 190–11 200, doi:10.1002/2016JD025218.

    • Search Google Scholar
    • Export Citation
  • Paegle, J., K. C. Mo, and J. Nogués-Paegle, 1996: Dependence of simulated precipitation on surface evaporation during the 1993 United States summer floods. Mon. Wea. Rev., 124, 345–361, doi:10.1175/1520-0493(1996)124<0345:DOSPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., E. Takle, M. Segal, and R. Turner, 1996: Influences of model parameterization schemes on the response of rainfall to soil moisture in the central United States. Mon. Wea. Rev., 124, 1786–1802, doi:10.1175/1520-0493(1996)124<1786:IOMPSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151–177, doi:10.1029/1999RG000072.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., T. J. Lee, J. H. Copeland, J. L. Eastman, C. L. Ziegler, and C. A. Finley, 1997: Use of USGS-provided data to improve weather and climate simulations. Ecol. Appl., 7, 3–21.

    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., S. Stadler, P. J. Wetzel, D. J. Stensrud, and M. Gregory, 1990: Observed effects of landscape variability on convective clouds. Bull. Amer. Meteor. Soc., 71, 272–280, doi:10.1175/1520-0477(1990)071<0272:OEOLVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analysis for sea surface temperatures. J. Climate, 20, 5473–5496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 1290–1309, doi:10.1175/MWR3305.1.

    • Search Google Scholar
    • Export Citation
  • Sato, T., 2013: Mechanism of orographic precipitation around the Meghalaya Plateau associated with intraseasonal oscillation and diurnal cycle. Mon. Wea. Rev., 141, 2451–2466, doi:10.1175/MWR-D-12-00321.1.

    • Search Google Scholar
    • Export Citation
  • Satomura, T., 2000: Diurnal variation of precipitation over the Indo-China Peninsula: Two-dimensional numerical simulation. J. Meteor. Soc. Japan, 78, 461–475.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, and U. Beyerle, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722–741, doi:10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73, 1593–1604, doi:10.1175/1520-0477(1992)073<1593:NMCCBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125–161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the Earth’s climate. Science, 215, 1498–1501, doi:10.1126/science.215.4539.1498.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Sugimoto, S., and K. Ueno, 2010: Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts. J. Geophys. Res., 115, D16105, doi:10.1029/2009JD013609.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and H. G. Takahashi, 2016: Effect of spatial resolution and cumulus parameterization on simulated precipitation over South Asia. SOLA, 12A, 7–12, doi:10.2151/sola.12A-002.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., T. Sato, and T. Sasaki, 2015: Impact of land-use change on winter precipitation in Hokkaido, Japan. SOLA, 11, 95–99, doi:10.2151/sola.2015-023.

    • Search Google Scholar
    • Export Citation
  • Takahashi, H. G., 2016: Seasonal and diurnal variations in rainfall characteristics over the tropical Asian monsoon region using TRMM-PR data. SOLA, 12A, 22–27, doi:10.2151/sola.12A-005.

    • Search Google Scholar
    • Export Citation
  • Takahashi, H. G., H. Fujinami, T. Yasunari, and J. Matsumoto, 2010a: Diurnal rainfall pattern observed by Tropical Rainfall Measuring Mission Precipitation Radar (TRMM-PR) around the Indochina Peninsula. J. Geophys. Res., 115, D07109, doi:10.1029/2009JD012155.

    • Search Google Scholar
    • Export Citation
  • Takahashi, H. G., T. Yoshikane, M. Hara, K. Takata, and T. Yasunari, 2010b: High-resolution modelling of the potential impact of land surface conditions on regional climate over Indochina associated with the diurnal precipitation cycle. Int. J. Climatol., 30, 2004–2020, doi:10.1002/joc.2119.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and R. J. Ellis, 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33, L03404, doi:10.1029/2006GL025962.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., D. J. Parker, and P. P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, doi:10.1029/2007GL030572.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. D. Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430–433, doi:10.1038/ngeo1173.

    • Search Google Scholar
    • Export Citation
  • Terao, T., M. N. Islam, T. Hayashi, and T. Oka, 2006: Nocturnal jet and its effects on early morning rainfall peak over northeastern Bangladesh during the summer monsoon season. Geophys. Res. Lett., 33, L18806, doi:10.1029/2006GL026156.

    • Search Google Scholar
    • Export Citation
  • Terao, T., M. N. Islam, F. Murata, and T. Hayashi, 2008: High temporal and spatial resolution observations of meso-scale features of pre- and mature summer monsoon cloud systems over Bangladesh. Nat. Hazards, 44, 341–351, doi:10.1007/s11069-007-9128-z.

    • Search Google Scholar
    • Export Citation
  • Wei, J., H. Su, and Z.-L. Yang, 2016: Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe. Climate Dyn., 46, 467–481, doi:10.1007/s00382-015-2593-2.

    • Search Google Scholar
    • Export Citation
  • Yamada, H., 2008: Numerical simulations of the role of land surface conditions in the evolution and structure of summertime thunderstorms over a flat highland. Mon. Wea. Rev., 136, 173–188, doi:10.1175/2007MWR2053.1.

    • Search Google Scholar
    • Export Citation
  • Yamada, H., and H. Uyeda, 2006: Transition of the rainfall characteristics related to the moistening of the land surface over the central Tibetan Plateau during the summer of 1998. Mon. Wea. Rev., 134, 3230–3247, doi:10.1175/MWR3235.1.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 1401–1415, doi:10.1175/BAMS-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 950 543 139
PDF Downloads 318 69 8