Simulating ENSO SSTAs from TAO/TRITON Winds: The Impacts of 20 Years of Buoy Observations in the Pacific Waveguide and Comparison with Reanalysis Products

Andrew M. Chiodi Joint Institute for the Study of the Ocean and Atmosphere, University of Washington, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by Andrew M. Chiodi in
Current site
Google Scholar
PubMed
Close
and
D. E. Harrison Joint Institute for the Study of the Ocean and Atmosphere, University of Washington, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by D. E. Harrison in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The fundamental importance of near-equatorial zonal wind stress in the evolution of the tropical Pacific Ocean’s seasonal cycle and El Niño–Southern Oscillation (ENSO) events is well known. It has been two decades since the TAO/TRITON buoy array was deployed, in part to provide accurate surface wind observations across the Pacific waveguide. It is timely to revisit the impact of TAO/TRITON winds on our ability to simulate and thereby understand the evolution of sea surface temperature (SST) in this region. This work shows that forced ocean model simulations of SST anomalies (SSTAs) during the periods with a reasonably high buoy data return rate can reproduce the major elements of SSTA variability during ENSO events using a wind stress field computed from TAO/TRITON observations only. This demonstrates that the buoy array usefully fulfills its waveguide-wind-measurement purpose. Comparison of several reanalysis wind fields commonly used in recent ENSO studies with the TAO/TRITON observations reveals substantial biases in the reanalyses that cause substantial errors in the variability and trends of the reanalysis-forced SST simulations. In particular, the negative trend in ERA-Interim is much larger and the NCEP–NCAR Reanalysis-1 and NCEP–DOE Reanalysis-2 variability much less than seen in the TAO/TRITON wind observations. There are also mean biases. Thus, even with the TAO/TRITON observations available for assimilation into these wind products, there remain oceanically important differences. The reanalyses would be much more useful for ENSO and tropical Pacific climate change study if they would more effectively assimilate the TAO/TRITON observations.

Denotes Open Access content.

Corresponding author e-mail: Andrew Chiodi, andy.chiodi@noaa.gov

Abstract

The fundamental importance of near-equatorial zonal wind stress in the evolution of the tropical Pacific Ocean’s seasonal cycle and El Niño–Southern Oscillation (ENSO) events is well known. It has been two decades since the TAO/TRITON buoy array was deployed, in part to provide accurate surface wind observations across the Pacific waveguide. It is timely to revisit the impact of TAO/TRITON winds on our ability to simulate and thereby understand the evolution of sea surface temperature (SST) in this region. This work shows that forced ocean model simulations of SST anomalies (SSTAs) during the periods with a reasonably high buoy data return rate can reproduce the major elements of SSTA variability during ENSO events using a wind stress field computed from TAO/TRITON observations only. This demonstrates that the buoy array usefully fulfills its waveguide-wind-measurement purpose. Comparison of several reanalysis wind fields commonly used in recent ENSO studies with the TAO/TRITON observations reveals substantial biases in the reanalyses that cause substantial errors in the variability and trends of the reanalysis-forced SST simulations. In particular, the negative trend in ERA-Interim is much larger and the NCEP–NCAR Reanalysis-1 and NCEP–DOE Reanalysis-2 variability much less than seen in the TAO/TRITON wind observations. There are also mean biases. Thus, even with the TAO/TRITON observations available for assimilation into these wind products, there remain oceanically important differences. The reanalyses would be much more useful for ENSO and tropical Pacific climate change study if they would more effectively assimilate the TAO/TRITON observations.

Denotes Open Access content.

Corresponding author e-mail: Andrew Chiodi, andy.chiodi@noaa.gov
Save
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, doi:10.1175/2010BAMS2946.1.

    • Search Google Scholar
    • Export Citation
  • Auad, G., A. J. Miller, J. O. Roads, and D. Cayan, 2001: Pacific Ocean wind stress and surface heat flux anomalies from NCEP reanalysis and observations: Cross-statistics and ocean model responses. J. Geophys. Res., 106, 22 24922 265, doi:10.1029/2000JC000264.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1969: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys., 4, 347376, doi:10.1016/0021-9991(69)90004-7.

    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, doi:10.1038/ngeo2399.

    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Equatorial Pacific easterly wind surges and the onset of La Niña events. J. Climate, 28, 776792, doi:10.1175/JCLI-D-14-00227.1.

    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian oscillation and westerly wind events. J. Climate, 27, 36193642, doi:10.1175/JCLI-D-13-00547.1.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1984: A primitive equation, 3-dimensional model of the ocean. GFDL Ocean Group Tech. Rep. 1, 143 pp.

  • Cronin, M. F., C. W. Fairall, and M. J. McPhaden, 2006: An assessment of buoy-derived and numerical weather prediction surface heat fluxes in the tropical Pacific. J. Geophys. Res., 111, C06038, doi:10.1029/2005JC003324.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2011: ERA Interim, daily. ECMWF, accessed 1 August 2015. [Available online at http://apps.ecmwf.int/datasets/data/interim-full-daily.]

  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, doi:10.1017/CBO9781107415324.020.

  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 295 pp.

  • Han, W., and Coauthors, 2014: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn., 43, 13571379, doi:10.1007/s00382-013-1951-1.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., 1989: On climatological monthly mean wind stress and wind stress curl fields over the World Ocean. J. Climate, 2, 5770, doi:10.1175/1520-0442(1989)002<0057:OCMMWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., 1991: Equatorial sea surface temperature sensitivity to net surface heat flux: Some ocean circulation model results. J. Climate, 4, 539549, doi:10.1175/1520-0442(1991)004<0539:ESSTST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and D. S. Luther, 1990: Surface winds from tropical Pacific islands—Climatological statistics. J. Climate, 3, 251271, doi:10.1175/1520-0442(1990)003<0251:SWFTPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and A. M. Chiodi, 2009: Pre- and post-1997/98 westerly wind events and equatorial Pacific cold tongue warming. J. Climate, 22, 568581, doi:10.1175/2008JCLI2270.1.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and A. M. Chiodi, 2015: Multi-decadal variability and trends in the El Niño–Southern Oscillation and tropical Pacific fisheries implications. Deep Sea Res. II, 113, 921, doi:10.1016/j.dsr2.2013.12.020.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., B. S. Giese, and E. S. Sarachik, 1990: Mechanisms of SST change in the equatorial waveguide during the 1982–83 ENSO. J. Climate, 3, 173188, doi:10.1175/1520-0442(1990)003<0173:MOSCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., A. M. Chiodi, and G. A. Vecchi, 2009: Effects of surface forcing on the seasonal cycle of the eastern equatorial Pacific. J. Mar. Res., 67, 701729, doi:10.1357/002224009792006179.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z.-Z. Hu, 2012: Uncertainty in the ocean–atmosphere feedbacks associated with ENSO in the reanalysis products. Climate Dyn., 39, 575588, doi:10.1007/s00382-011-1104-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Legler, D. M., and J. J. O’Brien, 1988: Tropical Pacific wind stress analysis for TOGA. Time Series of Ocean Measurements, Intergovernmental Oceanographic Commission Tech. Series 33, Vol. 4, United Nations Educational, Scientific and Cultural Organization, 11–17. [Available online at http://ioc-unesco.org/index.php?option=com_oe&task=viewDocumentRecord&docID=893.]

  • McGregor, S., A. Sen Gupta, and M. H. England, 2012: Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution. J. Climate, 25, 81648176, doi:10.1175/JCLI-D-12-00105.1.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmerman, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, doi:10.1038/nclimate2330.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2010: The global tropical moored buoy array. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society Conf., Venice, Italy, European Space Agency, 61, doi:10.5270/OceanObs09.cwp.61.

  • Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello, S. Cravatte, and G. Cambon, 2014: About the role of westerly wind events in the possible development of an El Niño in 2014. Geophys. Res. Lett., 41, 64766483, doi:10.1002/2014GL061186.

    • Search Google Scholar
    • Export Citation
  • Min, Q., J. Su, R. Zhang, and X. Rong, 2015: What hindered the El Niño pattern in 2014? Geophys. Res. Lett., 42, 67626770, doi:10.1002/2015GL064899.

    • Search Google Scholar
    • Export Citation
  • National Institute of Oceanography and IPSL, 2012: TropFlux: Air–sea heat and momentum fluxes for the global tropical oceans. Council of Scientific and Industrial Research–National Institute of Oceanography and IPSL, accessed 1 August 2015. [Available online at http://www.incois.gov.in/tropflux_datasets/data/daily/taux.]

  • NCEP, 1996: NCEP/NCAR Reanalysis 1. NOAA/OAR/ESRL Physical Sciences Division, accessed 1 August 2015. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html.]

  • NCEP, 2002: NCEP–DOE Reanalysis 2. NOAA/OAR/ESRL Physical Sciences Division, accessed 1 August 2015. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html.]

  • NOAA, 2002: NOAA optimal interpolation sea surface temperature, version 2. NOAA/OAR/ESRL Physical Sciences Division, accessed 1 August 2015. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.]

  • Philander, S. G. H., and A. D. Siegel, 1985: Simulation of El Niño of 1982–83. Coupled Ocean–Atmosphere Models, J. C. J. Nihoul, Ed., Elsevier, 517–541.

  • Praveen Kumar, B., J. Vialard, M. Lengaigne, V. S. N. Murty, M. J. McPhaden, M. F. Cronin, F. Pinsard, and K. Gopala Reddy, 2013: TropFlux wind stresses over the tropical oceans: Evaluation and comparison with other products. Climate Dyn., 40, 20492071, doi:10.1007/s00382-012-1455-4.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., Jr., 1974: An oceanic general circulation model with bottom topography. Dept. of Meteorology, University of California, Los Angeles, Tech. Rep. 9, 99 pp.

  • Serra, Y. L., M. F. Cronin, and G. N. Kiladis, 2007: Sub-seasonal variance of surface meteorological parameters in buoy observations and reanalyses. Geophys. Res. Lett., 34, L12708, doi:10.1029/2007GL029506.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., D. M. Legler, and K. V. Verzone, 2001: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J. Climate, 14, 40624072, doi:10.1175/1520-0442(2001)014<4062:QUINRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Fox-Kemper, M. Jochum, B. Rajagopalan, and S. G. Yeager, 2010: ENSO model validation using wavelet probability analysis. J. Climate, 23, 55405547, doi:10.1175/2010JCLI3609.1.

    • Search Google Scholar
    • Export Citation
  • TAO Project Office, 2000: Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network. NOAA/PMEL, accessed 1 August 2015. [Available online at http://www.pmel.noaa.gov/tao/data_deliv/deliv.html.]

  • Vecchi, G. A., and D. E. Harrison, 2003: On the termination of the 2002–03 El Niño event. Geophys. Res. Lett., 30, 1964, doi:10.1029/2003GL017564.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2006: The termination of the 1997–98 El Niño. Part I: Mechanisms of oceanic change. J. Climate, 19, 26332646, doi:10.1175/JCLI3776.1.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., C. Menkes, J.-P. Boulanger, P. Delecluse, E. Guilyardi, M. J. McPhaden, and G. Madec, 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31, 16491675, doi:10.1175/1520-0485(2001)031<1649:AMSOOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2004: Extended wind stress analyses for ENSO. J. Climate, 17, 25262540, doi:10.1175/1520-0442(2004)017<2526:EWSAFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., and Coauthors, 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, doi:10.1002/joc.2103.

    • Search Google Scholar
    • Export Citation
  • Zhang, H.-M., J. J. Bates, and R. W. Reynolds, 2006: Assessment of composite global sampling: Sea surface wind speed. Geophys. Res. Lett., 33, L17714, doi:10.1029/2006GL027086.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1520 716 70
PDF Downloads 245 48 3