ENSO Precipitation and Temperature Forecasts in the North American Multimodel Ensemble: Composite Analysis and Validation

Li-Chuan Chen Earth System Science Interdisciplinary Center/Cooperative Institute for Climate and Satellites, University of Maryland, College Park, and Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Li-Chuan Chen in
Current site
Google Scholar
PubMed
Close
,
Huug van den Dool Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Huug van den Dool in
Current site
Google Scholar
PubMed
Close
,
Emily Becker Climate Prediction Center, NOAA/NWS/NCEP, College Park, and Innovim, LLC, Greenbelt, Maryland

Search for other papers by Emily Becker in
Current site
Google Scholar
PubMed
Close
, and
Qin Zhang Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Qin Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, precipitation and temperature forecasts during El Niño–Southern Oscillation (ENSO) events are examined in six models in the North American Multimodel Ensemble (NMME), including the CFSv2, CanCM3, CanCM4, the Forecast-Oriented Low Ocean Resolution (FLOR) version of GFDL CM2.5, GEOS-5, and CCSM4 models, by comparing the model-based ENSO composites to the observed. The composite analysis is conducted using the 1982–2010 hindcasts for each of the six models with selected ENSO episodes based on the seasonal oceanic Niño index just prior to the date the forecasts were initiated. Two types of composites are constructed over the North American continent: one based on mean precipitation and temperature anomalies and the other based on their probability of occurrence in a tercile-based system. The composites apply to monthly mean conditions in November, December, January, February, and March as well as to the 5-month aggregates representing the winter conditions. For anomaly composites, the anomaly correlation coefficient and root-mean-square error against the observed composites are used for the evaluation. For probability composites, a new probability anomaly correlation measure and a root-mean probability score are developed for the assessment. All NMME models predict ENSO precipitation patterns well during wintertime; however, some models have large discrepancies between the model temperature composites and the observed. The fidelity is greater for the multimodel ensemble as well as for the 5-month aggregates. February tends to have higher scores than other winter months. For anomaly composites, most models perform slightly better in predicting El Niño patterns than La Niña patterns. For probability composites, all models have superior performance in predicting ENSO precipitation patterns than temperature patterns.

Corresponding author e-mail: Li-Chuan Chen, lichuan.chen@noaa.gov

Abstract

In this study, precipitation and temperature forecasts during El Niño–Southern Oscillation (ENSO) events are examined in six models in the North American Multimodel Ensemble (NMME), including the CFSv2, CanCM3, CanCM4, the Forecast-Oriented Low Ocean Resolution (FLOR) version of GFDL CM2.5, GEOS-5, and CCSM4 models, by comparing the model-based ENSO composites to the observed. The composite analysis is conducted using the 1982–2010 hindcasts for each of the six models with selected ENSO episodes based on the seasonal oceanic Niño index just prior to the date the forecasts were initiated. Two types of composites are constructed over the North American continent: one based on mean precipitation and temperature anomalies and the other based on their probability of occurrence in a tercile-based system. The composites apply to monthly mean conditions in November, December, January, February, and March as well as to the 5-month aggregates representing the winter conditions. For anomaly composites, the anomaly correlation coefficient and root-mean-square error against the observed composites are used for the evaluation. For probability composites, a new probability anomaly correlation measure and a root-mean probability score are developed for the assessment. All NMME models predict ENSO precipitation patterns well during wintertime; however, some models have large discrepancies between the model temperature composites and the observed. The fidelity is greater for the multimodel ensemble as well as for the 5-month aggregates. February tends to have higher scores than other winter months. For anomaly composites, most models perform slightly better in predicting El Niño patterns than La Niña patterns. For probability composites, all models have superior performance in predicting ENSO precipitation patterns than temperature patterns.

Corresponding author e-mail: Li-Chuan Chen, lichuan.chen@noaa.gov
Save
  • Barnston, A. G., A. Leetmaa, V. E. Kousky, R. E. Livezey, E. A. O’Lenic, H. van den Dool, A. J. Wagner, and D. A. Unger, 1999: NCEP forecasts of the El Nino of 1997–98 and its impacts. Bull. Amer. Meteor. Soc., 80, 18291852, doi:10.1175/1520-0477(1999)080<1829:NFOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bayr, T., D. Dommenget, T. Martin, and S. Power, 2014: The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Climate Dyn., 43, 27472763, doi:10.1007/s00382-014-2091-y.

    • Search Google Scholar
    • Export Citation
  • Becker, E., H. van den Dool, and Q. Zhang, 2014: Predictability and forecast skill in NMME. J. Climate, 27, 58915906, doi:10.1175/JCLI-D-13-00597.1.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., M. S. Halpert, V. E. Kousky, M. E. Gelman, C. F. Ropelewski, A. V. Douglas, and R. C. Schnell, 1999: Climate assessment for 1998. Bull. Amer. Meteor. Soc., 80, 1040, doi:10.1175/1520-0477(1999)080<1040:CAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Candille, G., and O. Talagrand, 2008: Impact of observational error on the validation of ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 134, 959971, doi:10.1002/qj.268.

    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, doi:10.1029/1999GL011140.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, D01103, doi:10.1029/2007JD008470.

    • Search Google Scholar
    • Export Citation
  • Frauen, C., D. Dommenget, N. Tyrrell, M. Rezny, and S. Wales, 2014: Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. J. Climate, 27, 62256244, doi:10.1175/JCLI-D-13-00757.1.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Graham, R. J., A. Evans, K. Mylne, M. Harrison, and K. Robertson, 2000: An assessment of seasonal predictability using atmospheric general circulation models. Quart. J. Roy. Meteor. Soc., 126, 22112240, doi:10.1256/smsqj.56711.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., I. Csiszar, and P. Romanov, 2000: Using NOAA/AVHRR products to monitor El Niño impacts: Focus on Indonesia in 1997–98. Bull. Amer. Meteor. Soc., 81, 11891205, doi:10.1175/1520-0477(2000)081<1189:UNPTME>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233, doi:10.1111/j.1600-0870.2005.00103.x.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., H.-K. Kim, and D. Unger, 2004: Long-lead seasonal temperature and precipitation prediction using tropical Pacific SST consolidation forecasts. J. Climate, 17, 33983414, doi:10.1175/1520-0442(2004)017<3398:LSTAPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ji, M., A. Kumar, and A. Leetmaa, 1994: An experimental coupled forecast system at the National Meteorological Center. Tellus, 46A, 398418, doi:10.1034/j.1600-0870.1994.t01-3-00006.x.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442064, doi:10.1175/JCLI-D-14-00112.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G., and H. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, doi:10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble (NMME): Phase-1 seasonal to interannual prediction, phase-2 toward developing intra-seasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., and R. W. Higgins, 2007: An alert classification system for monitoring and assessing the ENSO cycle. Wea. Forecasting, 22, 353371, doi:10.1175/WAF987.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Hoerling, M. Leetmaa, and P. Sardeshmukh, 1996: Assessing a GCM’s suitability for making seasonal predictions. J. Climate, 9, 115129, doi:10.1175/1520-0442(1996)009<0115:AAGSFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H. Weng, 2001: Coherent modes of global SST and summer rainfall over China: An assessment of the regional impacts of the 1997–98 El Niño. J. Climate, 14, 12941308, doi:10.1175/1520-0442(2001)014<1294:CMOGSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., and S. J. Mason, 2007: The 1997–98 summer rainfall season in southern Africa. Part I: Observations. J. Climate, 20, 51345148, doi:10.1175/JCLI4225.1.

    • Search Google Scholar
    • Export Citation
  • Mathieu, P.-P., R. T. Sutton, B. Dong, and M. Collins, 2004: Predictability of winter climate over the North Atlantic European region during ENSO events. J. Climate, 17, 19531974, doi:10.1175/1520-0442(2004)017<1953:POWCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and Coauthors, 2013: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, doi:10.1175/MWR-D-12-00216.1.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 13361353, doi:10.1175/1520-0469(1998)055<1336:TIOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NRC, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academies Press, 181 pp.

  • Opsteegh, J. D., and H. M. van den Dool, 1980: Seasonal differences in the stationary response of a linearized primitive equation model: Prospects for long-range weather forecasting? J. Atmos. Sci., 37, 21692185, doi:10.1175/1520-0469(1980)037<2169:SDITSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parameswaran, K., S. K. Nair, and K. Rajeev, 2004: Impact of Indonesian forest fires during the 1997 El Nino on the aerosol distribution over the Indian Ocean. Adv. Space Res., 33, 10981103, doi:10.1016/S0273-1177(03)00736-1.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O., P. J. Neiman, B. Walter, J.-W. Bao, and F. M. Ralph, 2005: Contributions from California coastal-zone surface fluxes to heavy coastal precipitation: A CALJET case study during the strong El Niño of 1998. Mon. Wea. Rev., 133, 11751198, doi:10.1175/MWR2910.1.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061625, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11, 109120, doi:10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Shukla, J., D. Paoline, D. Straus, D. DeWitt, M. Fennessy, J. Kinter, L. Marx, and R. Mo, 2000: Dynamical seasonal predictions with the COLA atmospheric model. Quart. J. Roy. Meteor. Soc., 126, 22652299, doi:10.1256/smsqj.56713.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and C. F. Ropelewski, 1997: Quantifying Southern Oscillation–precipitation relationships from an atmospheric GCM. J. Climate, 10, 22772284, doi:10.1175/1520-0442(1997)010<2277:QSOPRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. Branstator, D. Karoly, A. Kumar, N. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., 1983: A possible explanation of the observed persistence of monthly mean circulation anomalies. Mon. Wea. Rev., 111, 539544, doi:10.1175/1520-0493(1983)111<0539:APEOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., 2007: Empirical Methods in Short-Term Climate Prediction. Oxford University Press, 215 pp.

  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, doi:10.1175/JCLI-D-14-00158.1.

    • Search Google Scholar
    • Export Citation
  • Vernieres, G., M. M. Rienecker, R. Kovach, and C. L. Keppenne, 2012: The GEOS-iODAS: Description and evaluation. NASA Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM-2012-104606/Vol. 30, 73 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Vernieres589.pdf.]

  • Wang, X., and S. S. P. Shen, 1999: Estimation of spatial degrees of freedom of a climate field. J. Climate, 12, 12801291, doi:10.1175/1520-0442(1999)012<1280:EOSDOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, doi:10.1029/2009GL040896.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Yang, S., and X. Jiang, 2014: Prediction of eastern and central Pacific ENSO events and their impacts on East Asian climate by the NCEP Climate Forecast System. J. Climate, 27, 44514472, doi:10.1175/JCLI-D-13-00471.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and T. DelSole, 2012: Systematic comparison of ENSO teleconnection patterns between models and observations. J. Climate, 25, 425446, doi:10.1175/JCLI-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1828 1008 346
PDF Downloads 808 89 14