Reexamination of the Wave Activity Envelope Convective Scheme in Theoretical Modeling of MJO

Guosen Chen Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China, and Department of Atmospheric Sciences and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Guosen Chen in
Current site
Google Scholar
PubMed
Close
and
Bin Wang Department of Atmospheric Sciences and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The skeleton model is one of the theoretical models for understanding the essence of the Madden–Julian oscillation (MJO). The heating parameterization scheme in the skeleton model assumes that precipitation tendency is in phase and proportional to the low-level moisture anomaly. The authors show that the observed MJO precipitation tendency is not in phase with the low-level moisture anomaly. The consequence of the wave activity envelope (WAE) scheme is reexamined by using a general MJO theoretical framework in which trio-interaction among convective heating, moisture, and wave–boundary layer (BL) dynamics are included and various simplified convective schemes can be accommodated. Without the BL dynamics, the general model framework can be reduced to the original skeleton model. The authors show that the original skeleton model yields a neutral mode that exhibits a “quadrupole” horizontal structure and a quadrature relationship between precipitation and low-level moisture; both are inconsistent with observations. With the BL dynamics and damping included, the model can produce a growing mode with improved horizontal structure and precipitation–moisture relationship, but deficiencies remain because of the WAE scheme. The authors further demonstrate that the general model with the simplified Betts–Miller scheme and BL dynamics can produce a realistic horizontal structure (coupled Kelvin–Rossby wave structure) and precipitation–moisture relationship (i.e., the BL moisture convergence leads precipitation, and column-integrated moisture coincides with precipitation).

Denotes Open Access content.

Nanjing University of Information Science and Technology–Earth System Modeling Center Publication Number 134, School of Ocean and Earth Science and Technology Publication Number 9867, and International Pacific Research Center Publication Number 1223.

Corresponding author e-mail: Guosen Chen, chenguos@hawaii.edu

Abstract

The skeleton model is one of the theoretical models for understanding the essence of the Madden–Julian oscillation (MJO). The heating parameterization scheme in the skeleton model assumes that precipitation tendency is in phase and proportional to the low-level moisture anomaly. The authors show that the observed MJO precipitation tendency is not in phase with the low-level moisture anomaly. The consequence of the wave activity envelope (WAE) scheme is reexamined by using a general MJO theoretical framework in which trio-interaction among convective heating, moisture, and wave–boundary layer (BL) dynamics are included and various simplified convective schemes can be accommodated. Without the BL dynamics, the general model framework can be reduced to the original skeleton model. The authors show that the original skeleton model yields a neutral mode that exhibits a “quadrupole” horizontal structure and a quadrature relationship between precipitation and low-level moisture; both are inconsistent with observations. With the BL dynamics and damping included, the model can produce a growing mode with improved horizontal structure and precipitation–moisture relationship, but deficiencies remain because of the WAE scheme. The authors further demonstrate that the general model with the simplified Betts–Miller scheme and BL dynamics can produce a realistic horizontal structure (coupled Kelvin–Rossby wave structure) and precipitation–moisture relationship (i.e., the BL moisture convergence leads precipitation, and column-integrated moisture coincides with precipitation).

Denotes Open Access content.

Nanjing University of Information Science and Technology–Earth System Modeling Center Publication Number 134, School of Ocean and Earth Science and Technology Publication Number 9867, and International Pacific Research Center Publication Number 1223.

Corresponding author e-mail: Guosen Chen, chenguos@hawaii.edu
Save
  • Adames, Á. F., and J. M. Wallace, 2014a: Three-dimensional structure and evolution of the vertical velocity and divergence fields in the MJO. J. Atmos. Sci., 71, 46614681, doi:10.1175/JAS-D-14-0091.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2014b: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, doi:10.1175/JAS-D-13-0254.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, doi:10.1175/JAS-D-15-0003.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, doi:10.1175/JAS-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, doi:10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air‐mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, doi:10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, doi:10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., A. J. Majda, and O. M. Pauluis, 2004: Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit. Commun. Math. Sci., 2, 591626, doi:10.4310/CMS.2004.v2.n4.a3.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., and D. J. Raymond, 2005: Large-scale modes in a rotating atmosphere with radiative–convective instability and WISHE. J. Atmos. Sci., 62, 40844094, doi:10.1175/JAS3582.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, doi:10.1175/JCLI-D-11-00310.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, doi:10.1002/2014JD022375.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., F. Liu, M.-S. Ahn, Y.-M. Yang, and B. Wang, 2013: The role of SST structure in convectively coupled Kelvin–Rossby waves and its implications for MJO formation. J. Climate, 26, 59155930, doi:10.1175/JCLI-D-12-00303.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 12321240, doi:10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972, doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., M.-I. Lee, D. Kim, I.-S. Kang, and D. M. W. Frierson, 2008: The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J. Climate, 21, 883909, doi:10.1175/2007JCLI1790.1.

    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2012: A frictional skeleton model for the Madden–Julian oscillation. J. Atmos. Sci., 69, 27492758, doi:10.1175/JAS-D-12-020.1.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, doi:10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543. [Available online at https://www.jstage.jst.go.jp/article/jmsj1965/44/1/44_1_25/_pdf.]

    • Search Google Scholar
    • Export Citation
  • Monteiro, J. M., Á. F. Adames, J. M. Wallace, and J. S. Sukhatme, 2014: Interpreting the upper level structure of the Madden–Julian oscillation. Geophys. Res. Lett., 41, 91589165, doi:10.1002/2014GL062518.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, doi:10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2013: The cloud population and onset of the Madden–Julian oscillation over the Indian Ocean during DYNAMO‐AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, doi:10.1002/2013JD020421.

    • Search Google Scholar
    • Export Citation
  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, doi:10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, doi:10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, doi:10.1175/JAS-D-14-0052.1.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131, 30183037, doi:10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and A. J. Majda, 2015: Identifying the skeleton of the Madden–Julian oscillation in observational data. Mon. Wea. Rev., 143, 395416, doi:10.1175/MWR-D-14-00169.1.

    • Search Google Scholar
    • Export Citation
  • Thual, S., A. J. Majda, and S. N. Stechmann, 2014: A stochastic skeleton model for the MJO. J. Atmos. Sci., 71, 697715, doi:10.1175/JAS-D-13-0186.1.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, E. J. Fetzer, B. H. Lambrigtsen, Y. L. Yung, and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485, doi:10.1175/JAS3782.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., M. C. Wheeler, H. H. Hendon, C. J. Schreck, C. D. Thorncroft, and G. N. Kiladis, 2013: A modified multivariate Madden–Julian oscillation index using velocity potential. Mon. Wea. Rev., 141, 41974210, doi:10.1175/MWR-D-12-00327.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988a: Comments on “An air–sea interaction model of intraseasonal oscillation in the tropics.” J. Atmos. Sci., 45, 35213525, doi:10.1175/1520-0469(1988)045<3521:COAIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988b: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 20512065, doi:10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990a: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397413, doi:10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990b: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, doi:10.1007/BF01026810.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 13861400, doi:10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and F. Liu, 2011: A model for scale interaction in the Madden–Julian oscillation. J. Atmos. Sci., 68, 25242536, doi:10.1175/2011JAS3660.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and G. Chen, 2016: A general theoretical framework for understanding essential dynamics of Madden–Julian oscillation. Climate Dyn., doi:10.1007/s00382-016-3448-1, in press.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, doi:10.1175/JAS-D-13-0372.1.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analyses. J. Atmos. Sci., 69, 316, doi:10.1175/JAS-D-11-033.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 632 456 141
PDF Downloads 171 34 3