Spatiotemporal Temperature Variability over the Tibetan Plateau: Altitudinal Dependence Associated with the Global Warming Hiatus

Danlu Cai Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

Search for other papers by Danlu Cai in
Current site
Google Scholar
PubMed
Close
,
Qinglong You Key Laboratory of Meteorological Disaster of Ministry of Education, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Qinglong You in
Current site
Google Scholar
PubMed
Close
,
Klaus Fraedrich Max-Planck-Institute for Meteorology, Hamburg, Germany

Search for other papers by Klaus Fraedrich in
Current site
Google Scholar
PubMed
Close
, and
Yanning Guan Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yanning Guan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The recent slowdown in global warming has initiated a reanalysis of temperature data in some mountainous regions for understanding the consequences and impact that a hiatus has on the climate system. Spatiotemporal temperature variability is analyzed over the Tibetan Plateau because of its sensitivity to climate change with a station network updated to 2014, and its linkages to remote sensing–based variability of MODIS daytime and nighttime temperature are investigated. Results indicate the following: 1) Almost all stations have experienced a notable warming in the time interval 1961–2014, with most obvious warming in winter, which depends on the selected time intervals. 2) There is no clear shift from a predominant warming to a near stagnation during the most recent period (2001–present). 3) Uniform altitudinal dependence of temperature change trends could not be confirmed for all regions, time intervals, and seasons, but sometimes an altitude threshold around 3 km is apparent. 4) Most of the meteorological stations are associated with MODIS temperature warming pixels, and thus regional cooling is missing when considering only the locations of meteorological stations. In summarizing, previous studies based on station observations do not provide a complete picture for the temperature change over the Tibetan Plateau. Remote sensing–based analyses have the potential to find early signals of regional climate changes and assess the impact of global climate changes in complex regional, seasonal, and altitudinal environments.

Corresponding author e-mails: Yanning Guan, guanyn@radi.ac.cn; Danlu Cai, caidl@radi.ac.cn

Abstract

The recent slowdown in global warming has initiated a reanalysis of temperature data in some mountainous regions for understanding the consequences and impact that a hiatus has on the climate system. Spatiotemporal temperature variability is analyzed over the Tibetan Plateau because of its sensitivity to climate change with a station network updated to 2014, and its linkages to remote sensing–based variability of MODIS daytime and nighttime temperature are investigated. Results indicate the following: 1) Almost all stations have experienced a notable warming in the time interval 1961–2014, with most obvious warming in winter, which depends on the selected time intervals. 2) There is no clear shift from a predominant warming to a near stagnation during the most recent period (2001–present). 3) Uniform altitudinal dependence of temperature change trends could not be confirmed for all regions, time intervals, and seasons, but sometimes an altitude threshold around 3 km is apparent. 4) Most of the meteorological stations are associated with MODIS temperature warming pixels, and thus regional cooling is missing when considering only the locations of meteorological stations. In summarizing, previous studies based on station observations do not provide a complete picture for the temperature change over the Tibetan Plateau. Remote sensing–based analyses have the potential to find early signals of regional climate changes and assess the impact of global climate changes in complex regional, seasonal, and altitudinal environments.

Corresponding author e-mails: Yanning Guan, guanyn@radi.ac.cn; Danlu Cai, caidl@radi.ac.cn
Save
  • Amaya, D. J., S.-P. Xie, A. J. Miller, and M. J. McPhaden, 2015: Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. J. Geophys. Res. Oceans, 120, 67826798, doi:10.1002/2015JC010906.

    • Search Google Scholar
    • Export Citation
  • Aufammer, W., 1998: Getreide- und andere Körnerfruchtarten: Bedeutung, Nutzung und Anbau. Eugen Ulmer, 560 pp.

  • Bengtsson, L., 1976: Snowmelt estimated from energy budget studies. Hydrol. Res., 7, 318.

  • Cai, D., Y. Guan, S. Guo, C. Zhang, and K. Fraedrich, 2014: Mapping plant functional types over broad mountainous regions: A hierarchical soft time-space classification applied to the Tibetan Plateau. Remote Sens., 6, 35113532, doi:10.3390/rs6043511.

    • Search Google Scholar
    • Export Citation
  • Cai, D., K. Fraedrich, F. Sielmann, L. Zhang, X. Zhu, S. Guo, and Y. Guan, 2015: Vegetation dynamics on the Tibetan Plateau (1982–2006): An attribution by ecohydrological diagnostics. J. Climate, 28, 45764584, doi:10.1175/JCLI-D-14-00692.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Z. Li, Y. Fan, H. Wang, and H. Deng, 2015: Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res., 139, 1119, doi:10.1016/j.envres.2014.12.029.

    • Search Google Scholar
    • Export Citation
  • Cheng, G., and T. Wu, 2007: Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau. J. Geophys. Res., 112, F02S03, doi:10.1029/2006JF000631.

    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, doi:10.1002/qj.2297.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Search Google Scholar
    • Export Citation
  • Dai, A., J. C. Fyfe, S.-P. Xie, and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555559, doi:10.1038/nclimate2605.

    • Search Google Scholar
    • Export Citation
  • De Beurs, K. M., and G. M. Henebry, 2004: Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ., 89, 497509, doi:10.1016/j.rse.2003.11.006.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. R. Zeng, A. Rosati, G. A. Vecchi, and A. T. Wittenberg, 2015: A link between the hiatus in global warming and North American drought. J. Climate, 28, 38343845, doi:10.1175/JCLI-D-14-00616.1.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2015: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Climate Dyn., 45, 26672681, doi:10.1007/s00382-015-2500-x.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Foster, G., and S. Rahmstorf, 2011: Global temperature evolution 1979–2010. Environ. Res. Lett., 6, 044022, doi:10.1088/1748-9326/6/4/044022.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and G. M. Flato, 1999: Enhanced climate change and its detection over the Rocky Mountains. J. Climate, 12, 230243, doi:10.1175/1520-0442-12.1.230.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., N. P. Gillett, and F. W. Zwiers, 2013: Overestimated global warming over the past 20 years. Nat. Climate Change, 3, 767769, doi:10.1038/nclimate1972.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288296, doi:10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gleisner, H., P. Thejll, B. Christiansen, and J. K. Nielsen, 2015: Recent global warming hiatus dominated by low‐latitude temperature trends in surface and troposphere data. Geophys. Res. Lett., 42, 510517, doi:10.1002/2014GL062596.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., F. J. Doblas-Reyes, I. Andreu-Burillo, and M. Asif, 2013: Retrospective prediction of the global warming slowdown in the past decade. Nat. Climate Change, 3, 649653, doi:10.1038/nclimate1863.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmos. Chem. Phys., 11, 13 42113 449, doi:10.5194/acp-11-13421-2011.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Kang, S., Y. Xu, Q. You, W.-A. Flügel, N. Pepin, and T. Yao, 2010: Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5, 015101, doi:10.1088/1748-9326/5/1/015101.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, doi:10.1126/science.aaa5632.

    • Search Google Scholar
    • Export Citation
  • Keller, E., H. Hanus, and K.-U. Heyland, 1997: Grundlagen der landwirtschaftlichen Pflanzenproduktion. Eugen Ulmer, 860 pp.

  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Li, Q., X. Liu, H. Zhang, T. C. Peterson, and D. R. Easterling, 2004: Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data. Adv. Atmos. Sci., 21, 260268, doi:10.1007/BF02915712.

    • Search Google Scholar
    • Export Citation
  • Liu, J., S. Wang, S. Yu, D. Yang, and L. Zhang, 2009: Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Global Planet. Change, 67, 209217, doi:10.1016/j.gloplacha.2009.03.010.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Search Google Scholar
    • Export Citation
  • Liu, X., Z. Cheng, L. Yan, and Z.-Y. Yin, 2009: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet. Change, 68, 164174, doi:10.1016/j.gloplacha.2009.03.017.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Teng, and J. M. Arblaster, 2014: Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Climate Change, 4, 898902, doi:10.1038/nclimate2357.

    • Search Google Scholar
    • Export Citation
  • Messerli, B., and J. D. Ives, 1997: Mountains of the World: A Global Priority. Parthenon, 510 pp.

  • Otto, A., and Coauthors, 2013: Energy budget constraints on climate response. Nat. Geosci., 6, 415416, doi:10.1038/ngeo1836.

  • Pepin, N., and D. J. Seidel, 2005: A global comparison of surface and free‐air temperatures at high elevations. J. Geophys. Res., 110, D03104, doi:10.1029/2004JD005047.

    • Search Google Scholar
    • Export Citation
  • Pepin, N., and J. Lundquist, 2008: Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett., 35, L14701, doi:10.1029/2008GL034026.

    • Search Google Scholar
    • Export Citation
  • Pepin, N., and Coauthors, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, doi:10.1038/nclimate2563.

    • Search Google Scholar
    • Export Citation
  • Qin, J., K. Yang, S. Liang, and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321327, doi:10.1007/s10584-009-9733-9.

    • Search Google Scholar
    • Export Citation
  • Rabatel, A., and Coauthors, 2013: Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere, 7, 81102, doi:10.5194/tc-7-81-2013.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2014: Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 7, 185189, doi:10.1038/ngeo2098.

    • Search Google Scholar
    • Export Citation
  • Schauwecker, S., and Coauthors, 2014: Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Global Planet. Change, 119, 8597, doi:10.1016/j.gloplacha.2014.05.005.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., D. T. Shindell, and K. Tsigaridis, 2014: Reconciling warming trends. Nat. Geosci., 7, 158160, doi:10.1038/ngeo2105.

  • Sitte, P., H. Ziegler, F. Ehrendorfer, and A. Bresinsky, 1999: Lehrbuch der Botanik, 34th ed. Fischer, 1176 pp.

  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988991, doi:10.1126/science.1257856.

    • Search Google Scholar
    • Export Citation
  • Stisen, S., I. Sandholt, A. Nørgaard, R. Fensholt, and L. Eklundh, 2007: Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sens. Environ., 110, 262274, doi:10.1016/j.rse.2007.02.025.

    • Search Google Scholar
    • Export Citation
  • Su, Z., and Y. Shi, 2002: Response of monsoonal temperate glaciers to global warming since the Little Ice Age. Quat. Int., 97–98, 123131, doi:10.1016/S1040-6182(02)00057-5.

    • Search Google Scholar
    • Export Citation
  • Thompson, L. G., E. Mosley-Thompson, M. E. Davis, P.-N. Lin, K. Henderson, and T. A. Mashiotta, 2003: Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Climate Variability and Change in High Elevation Regions: Past, Present & Future, H. F. Diaz, Ed., Springer, 137–155.

  • Tollefson, J., 2014: Climate change: The case of the missing heat. Nature, 505, 276278, doi:10.1038/505276a.

  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., and R. S. Bradley, 2000: Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys. Res. Lett., 27, 38853888, doi:10.1029/2000GL011871.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., E. Franquist, R. Garreaud, L. Casimiro, W. Sven, and B. Cáceres, 2015: Impact of the global warming hiatus on Andean temperature. J. Geophys. Res. Atmos., 120, 37453757, doi:10.1002/2015JD023126.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., H. Shiogama, H. Tatebe, M. Hayashi, M. Ishii, and M. Kimoto, 2014: Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Climate Change, 4, 893897, doi:10.1038/nclimate2355.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and X. Liu, 2007: Response of vegetation in the Qinghai-Tibet Plateau to global warming. Chin. Geogr. Sci., 17, 151159, doi:10.1007/s11769-007-0151-5.

    • Search Google Scholar
    • Export Citation
  • Yan, L., and X. Liu, 2014: Has climatic warming over the Tibetan Plateau paused or continued in recent years? J. Earth Ocean Atmos. Sci., 1, 1328.

    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, doi:10.1016/j.gloplacha.2013.12.001.

    • Search Google Scholar
    • Export Citation
  • Yao, T., Y. Wang, S. Liu, J. Pu, Y. Shen, and A. Lu, 2004: Recent glacial retreat in High Asia in China and its impact on water resource in northwest China. Sci. China Earth Sci., 47, 10651075.

    • Search Google Scholar
    • Export Citation
  • Yao, Y., and B. Zhang, 2013: MODIS-based estimation of air temperature of the Tibetan Plateau. J. Geogr. Sci., 23, 627640, doi:10.1007/s11442-013-1033-7.

    • Search Google Scholar
    • Export Citation
  • You, Q., S. Kang, N. Pepin, W.-A. Flügel, Y. Yan, H. Behrawan, and J. Huang, 2010: Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global Planet. Change, 71, 124133, doi:10.1016/j.gloplacha.2010.01.020.

    • Search Google Scholar
    • Export Citation
  • You, Q., K. Fraedrich, F. Sielmann, J. Min, S. Kang, Z. Ji, X. Zhu, and G. Ren, 2014: Present and projected degree days in China from observation, reanalysis and simulations. Climate Dyn., 43, 14491462, doi:10.1007/s00382-013-1960-0.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., O. Bothe, and K. Fraedrich, 2011: Summer atmospheric bridging between Europe and East Asia: Influences on drought and wetness on the Tibetan Plateau. Quat. Int., 236, 151157, doi:10.1016/j.quaint.2010.06.015.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2152 1296 342
PDF Downloads 768 109 9